Summary In the oceans, viruses that infect bacteria (phages) influence a variety of microbially mediated processes that drive global biogeochemical cycles. The nature of their influence is dependent upon infection mode, be it lytic or lysogenic. Temperate phages are predicted to be prevalent in marine systems where they are expected to execute both types of infection modes. Understanding the range and outcomes of temperate phage–host interactions is fundamental for evaluating their ecological impact. Here, we (i) review phage‐mediated rewiring of host metabolism, with a focus on marine systems, (ii) consider the range and nature of temperate phage–host interactions, and (iii) draw on studies of cultivated model systems to examine the consequences of lysogeny among several dominant marine bacterial lineages. We also readdress the prevalence of lysogeny among marine bacteria by probing a collection of 1239 publicly available bacterial genomes, representing cultured and uncultivated strains, for evidence of complete prophages. Our conservative analysis, anticipated to underestimate true prevalence, predicts 18% of the genomes examined contain at least one prophage, the majority (97%) were found within genomes of cultured isolates. These results highlight the need for cultivation of additional model systems to better capture the diversity of temperate phage–host interactions in the oceans.
more »
« less
The landscape of lysogeny across microbial community density, diversity and energetics
Summary Lysogens are common at high bacterial densities, an observation that contrasts with the prevailing view of lysogeny as a low‐density refugium strategy. Here, we review the mechanisms regulating lysogeny in complex communities and show that the additive effects of coinfections, diversity and host energic status yield a bimodal distribution of lysogeny as a function of microbial densities. At high cell densities (above 106 cells ml−1or g−1) and low diversity, coinfections by two or more phages are frequent and excess energy availability stimulates inefficient metabolism. Both mechanisms favour phage integration and characterize the Piggyback‐the‐Winner dynamic. At low densities (below 105 cells ml−1or g−1), starvation represses lytic genes and extends the time window for lysogenic commitment, resulting in a higher frequency of coinfections that cause integration. This pattern follows the predictions of the refugium hypothesis. At intermediary densities (between 105and 106 cells ml−1or g−1), encounter rates and efficient energy metabolism favour lysis. This may involve Kill‐the‐Winner lytic dynamics and induction. Based on these three regimes, we propose a framework wherein phage integration occurs more frequently at both ends of the host density gradient, with distinct underlying molecular mechanisms (coinfections and host metabolism) dominating at each extreme.
more »
« less
- Award ID(s):
- 1951678
- PAR ID:
- 10370398
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Environmental Microbiology
- Volume:
- 23
- Issue:
- 8
- ISSN:
- 1462-2912
- Page Range / eLocation ID:
- p. 4098-4111
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Dalia, Ankur B (Ed.)Quorum sensing (QS) is a process of cell-to-cell communication that bacteria use to synchronize collective behaviors. QS relies on the production, release, and group-wide detection of extracellular signaling molecules called autoinducers.Vibrios use two QS systems: the LuxO-OpaR circuit and the VqmA-VqmR circuit. Both QS circuits control group behaviors including biofilm formation and surface motility. TheVibrio parahaemolyticustemperate phage φVP882 encodes a VqmA homolog (called VqmAφ). When VqmAφ is produced by φVP882 lysogens, it binds to the host-produced autoinducer called DPO and launches the φVP882 lytic cascade. This activity times induction of lysis with high host cell density and presumably promotes maximal phage transmission to new cells. Here, we explore whether, in addition to induction from lysogeny, QS controls the initial establishment of lysogeny by φVP882 in naïve host cells. Using mutagenesis, phage infection assays, and phenotypic analyses, we show that φVP882 connects its initial lysis-lysogeny decision to both host cell density and whether the host resides in liquid or on a surface. Host cells in the low-cell-density QS state primarily undergo lysogenic conversion. The QS regulator LuxO~P promotes φVP882 lysogenic conversion of low-cell-density planktonic host cells. By contrast, the ScrABC surface-sensing system regulates lysogenic conversion of low-cell-density surface-associated host cells. ScrABC controls the abundance of the second messenger molecule cyclic diguanylate, which in turn, modulates motility. ThescrABCoperon is only expressed when its QS repressor, OpaR, is absent. Thus, at low cell density, QS-dependent derepression ofscrABCdrives lysogenic conversion in surface-associated host cells. These results demonstrate that φVP882 integrates cues from multiple sensory pathways into its lifestyle decision making upon infection of a new host cell.more » « less
-
Abstract Most bacteria in the biosphere are predicted to be polylysogens harbouring multiple prophages1–5. In studied systems, prophage induction from lysogeny to lysis is near-universally driven by DNA-damaging agents6. Thus, how co-residing prophages compete for cell resources if they respond to an identical trigger is unknown. Here we discover regulatory modules that control prophage induction independently of the DNA-damage cue. The modules bear little resemblance at the sequence level but share a regulatory logic by having a transcription factor that activates the expression of a neighbouring gene that encodes a small protein. The small protein inactivates the master repressor of lysis, which leads to induction. Polylysogens that harbour two prophages exposed to DNA damage release mixed populations of phages. Single-cell analyses reveal that this blend is a consequence of discrete subsets of cells producing one, the other or both phages. By contrast, induction through the DNA-damage-independent module results in cells producing only the phage sensitive to that specific cue. Thus, in the polylysogens tested, the stimulus used to induce lysis determines phage productivity. Considering the lack of potent DNA-damaging agents in natural habitats, additional phage-encoded sensory pathways to lysis likely have fundamental roles in phage–host biology and inter-prophage competition.more » « less
-
Abstract When phage infect their bacterial hosts, they may either lyse the cell and generate a burst of new phage, or lysogenize the bacterium, incorporating the phage genome into it. Phage lysis/lysogeny strategies are assumed to be highly optimized, with the optimal tradeoff depending on environmental conditions. However, in nature, phage of radically different lysis/lysogeny strategies coexist in the same environment, preying on the same bacteria. How can phage preying on the same bacteria coexist if one is more optimal than the other? Here, we address this conundrum within a modeling framework, simulating the population dynamics of communities of phage and their lysogens. We find that coexistence between phage of different lysis/lysogeny strategies is a natural outcome of chaotic population dynamics that arise within sufficiently diverse communities, which ensure no phage is able to absolutely dominate its competitors. Our results further suggest a bet-hedging mechanism at the level of the phage pan-genome, wherein obligate lytic (virulent) strains typically outcompete temperate strains, but also more readily fluctuate to extinction within a local community.more » « less
-
Abstract Temperate phages are viruses of bacteria that can establish two types of infection: a lysogenic infection in which the virus replicates with the host cell without producing virions, and a lytic infection where the host cell is eventually destroyed, and new virions are released. While both lytic and lysogenic infections are routinely observed in the environment, the ecological and evolutionary processes regulating these viral dynamics are still not well understood, especially for uncultivated virus-host pairs. Here, we characterized the long-term dynamics of uncultivated viruses infecting green sulfur bacteria (GSB) in a model freshwater lake (Trout Bog Lake, TBL). As no GSB virus has been formally described yet, we first used two complementary approaches to identify new GSB viruses from TBL; one in vitro based on flow cytometry cell sorting, the other in silico based on CRISPR spacer sequences. We then took advantage of existing TBL metagenomes covering the 2005–2018 period to examine the interactions between GSB and their viruses across years and seasons. From our data, GSB populations in TBL were constantly associated with at least 2-8 viruses each, including both lytic and temperate phages. The dominant GSB population in particular was consistently associated with two prophages with a nearly 100% infection rate for >10 years. We illustrate with a theoretical model that such an interaction can be stable given a low, but persistent, level of prophage induction in low-diversity host populations. Overall, our data suggest that lytic and lysogenic viruses can readily co-infect the same host population, and that host strain-level diversity might be an important factor controlling virus-host dynamics including lytic/lysogeny switch.more » « less