skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Hard Carbon Derived from Avocado Peels as a High-Capacity, Fast Na + Diffusion Anode Material for Sodium-Ion Batteries

Deriving battery grade materials from natural sources is a key element to establishing sustainable energy storage technologies. In this work, we present the use of avocado peels as a sustainable source for conversion into hard carbon-based anodes for sodium ion batteries. The avocado peels are simply washed and dried then proceeded to a high temperature conversion step. Materials characterization reveals conversion of the avocado peels in high purity, highly porous hard carbon powders. When prepared as anode materials they show to the capability to reversibly store and release sodium ions. The hard carbon-based electrodes exhibit excellent cycling performance, namely, a reversible capacity of 352.55 mAh g−1at 0.05 A g−1, rate capability up to 86 mAh g−1at 3500 mA g−1, capacity retention of >90%, and 99.9% coulombic efficiencies after 500 cycles. Cyclic voltammetry studies indicated that the storage process was diffusion-limited, with diffusion coefficient of 8.62 × 10−8cm2s−1. This study demonstrates avocado derived hard carbon as a sustainable source that can provide excellent electrochemical and battery performance as anodes in sodium ion batteries.

 
more » « less
Award ID(s):
1751621
PAR ID:
10370432
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
The Electrochemical Society
Date Published:
Journal Name:
ECS Advances
Volume:
1
Issue:
3
ISSN:
2754-2734
Page Range / eLocation ID:
Article No. 030502
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The significant performance decay in conventional graphite anodes under low‐temperature conditions is attributed to the slow diffusion of alkali metal ions, requiring new strategies to enhance the charge storage kinetics at low temperatures. Here, nitrogen (N)‐doped defective crumpled graphene (NCG) is employed as a promising anode to enable stable low‐temperature operation of alkali metal‐ion storage by exploiting the surface‐controlled charge storage mechanisms. At a low temperature of −40 °C, the NCG anodes maintain high capacities of ≈172 mAh g−1for lithium (Li)‐ion, ≈107 mAh g−1for sodium (Na)‐ion, and ≈118 mAh g−1for potassium (K)‐ion at 0.01 A g−1with outstanding rate‐capability and cycling stability. A combination of density functional theory (DFT) and electrochemical analysis further reveals the role of the N‐functional groups and defect sites in improving the utilization of the surface‐controlled charge storage mechanisms. In addition, the full cell with the NCG anode and a LiFePO4cathode shows a high capacity of ≈73 mAh g−1at 0.5 °C even at −40 °C. The results highlight the importance of utilizing the surface‐controlled charge storage mechanisms with controlled defect structures and functional groups on the carbon surface to improve the charge storage performance of alkali metal‐ion under low‐temperature conditions.

     
    more » « less
  2. Abstract

    Si‐based anodes with a stiff diamond structure usually suffer from sluggish lithiation/delithiation reaction due to low Li‐ion and electronic conductivity. Here, a novel ternary compound ZnSi2P3with a cation‐disordered sphalerite structure, prepared by a facile mechanochemical method, is reported, demonstrating faster Li‐ion and electron transport and greater tolerance to volume change during cycling than the existing Si‐based anodes. A composite electrode consisting of ZnSi2P3and carbon achieves a high initial Coulombic efficiency (92%) and excellent rate capability (950 mAh g−1at 10 A g−1) while maintaining superior cycling stability (1955 mAh g−1after 500 cycles at 300 mA g−1), surpassing the performance of most Si‐ and P‐based anodes ever reported. The remarkable electrochemical performance is attributed to the sphalerite structure that allows fast ion and electron transport and the reversible Li‐storage mechanism involving intercalation and conversion reactions. Moreover, the cation‐disordered sphalerite structure is flexible to ionic substitutions, allowing extension to a family of Zn(Cu)Si2+xP3solid solution anodes (x= 0, 2, 5, 10) with large capacity, high initial Coulombic efficiency, and tunable working potentials, representing attractive anode candidates for next‐generation, high‐performance, and low‐cost Li‐ion batteries.

     
    more » « less
  3. Abstract

    Given the high energy density, alkali metals are preferred in rechargeable batteries as anodes, however, with significant limitations such as dendrite growth and volume expansion, leading to poor cycle life and safety concerns. Herein a room‐temperature liquid alloy system is proposed as a possible solution for its self‐recovery property. Full extraction of alkali metal ions from the ternary alloy brings it back to the binary liquid eutectic, and thus enables a self‐healing process of the cracked or pulverized structure during cycling. A half‐cell discharge specific capacity of up to 706.0 mAh g−1in lithium‐ion battery and 222.3 mAh g−1for sodium‐ion battery can be delivered at 0.1C; at a high rate of 5C, a sizable capacity of over 400 mAh g−1for Li and 60 mAh g−1for Na could be retained. Li and Na ion full cells with considerable stability are demonstrated when pairing liquid metal with typical cathode materials, LiFePO4, and P2‐Na2/3[Ni1/3Mn2/3]O2. Remarkable cyclic durability, considerable theoretical capacity utilization, and reasonable rate stability present in this work allow this novel anode system to be a potential candidate for rechargeable alkali‐ion batteries.

     
    more » « less
  4. Abstract

    Lithium‐ion and sodium‐ion batteries (LIBs and SIBs) are crucial in our shift toward sustainable technologies. In this work, the potential of layered boride materials (MoAlB and Mo2AlB2) as novel, high‐performance electrode materials for LIBs and SIBs, is explored. It is discovered that Mo2AlB2shows a higher specific capacity than MoAlB when used as an electrode material for LIBs, with a specific capacity of 593 mAh g−1achieved after 500 cycles at 200 mA g−1. It is also found that surface redox reactions are responsible for Li storage in Mo2AlB2, instead of intercalation or conversion. Moreover, the sodium hydroxide treatment of MoAlB leads to a porous morphology and higher specific capacities exceeding that of pristine MoAlB. When tested in SIBs, Mo2AlB2exhibits a specific capacity of 150 mAh g−1at 20 mA g−1. These findings suggest that layered borides have potential as electrode materials for both LIBs and SIBs, and highlight the importance of surface redox reactions in Li storage mechanisms.

     
    more » « less
  5. Abstract

    This study presents a new material, “HxCrS2” (denotes approximate composition) formed by proton‐exchange of NaCrS2which has a measured capacity of 728 mAh g−1with significant improvements to capacity retention, sustaining over 700 mAh g−1during cycling experiments. This is the highest reported capacity for a transition metal sulfide electrode and outperforms the most promising proposed sodium anodes to date. HxCrS2exhibits a biphasic structure featuring alternating crystalline and amorphous lamella on the scale of a few nanometers. This unique structural motif enables reversible access to Cr redox in the material resulting in higher capacities than seen in the parent structure which features only S redox. Pretreatment by proton‐exchange offers a route to materials such as HxCrS2which provide fast diffusion and high capacities for sodium‐ion batteries.

     
    more » « less