Deriving battery grade materials from natural sources is a key element to establishing sustainable energy storage technologies. In this work, we present the use of avocado peels as a sustainable source for conversion into hard carbon-based anodes for sodium ion batteries. The avocado peels are simply washed and dried then proceeded to a high temperature conversion step. Materials characterization reveals conversion of the avocado peels in high purity, highly porous hard carbon powders. When prepared as anode materials they show to the capability to reversibly store and release sodium ions. The hard carbon-based electrodes exhibit excellent cycling performance, namely, a reversible capacity of 352.55 mAh g−1at 0.05 A g−1, rate capability up to 86 mAh g−1at 3500 mA g−1, capacity retention of >90%, and 99.9% coulombic efficiencies after 500 cycles. Cyclic voltammetry studies indicated that the storage process was diffusion-limited, with diffusion coefficient of 8.62 × 10−8cm2s−1. This study demonstrates avocado derived hard carbon as a sustainable source that can provide excellent electrochemical and battery performance as anodes in sodium ion batteries.
- Publication Date:
- NSF-PAR ID:
- 10370432
- Journal Name:
- ECS Advances
- Volume:
- 1
- Issue:
- 3
- Page Range or eLocation-ID:
- Article No. 030502
- ISSN:
- 2754-2734
- Publisher:
- The Electrochemical Society
- Sponsoring Org:
- National Science Foundation
More Like this
-
Metal-ion batteries (e.g., lithium and sodium ion batteries) are the promising power sources for portable electronics, electric vehicles, and smart grids. Recent metal-ion batteries with organic liquid electrolytes still suffer from safety issues regarding inflammability and insufficient lifetime.1 As the next generation energy storage devices, all-solid-state batteries (ASSBs) have promising potentials for the improved safety, higher energy density, and longer cycle life than conventional Li-ion batteries.2 The nonflammable solid electrolytes (SEs), where only Li ions are mobile, could prevent battery combustion and explosion since the side reactions that cause safety issues as well as degradation of the battery performance are largely suppressed. However, their practical application is hampered by the high resistance arising at the solid–solid electrode–electrolyte interface (including cathode-electrolyte interface and anode-electrolyte interface).3 Several methods have been introduced to optimize the contact capability as well as the electrochemical/chemical stability between the metal anodes (i.e.: Li and Na) and the SEs, which exhibited decent results in decreasing the charge transfer resistance and broadening the range of the stable energy window (i.e., lowing the chemical potential of metal anode below the highest occupied molecular orbital of the SEs).4 Nevertheless, mitigation for the cathode in ASSB is tardily developed because: (1) themore »
-
Both electronic and ionic conductivities are of high importance to the performance of anode materials for Li-ion batteries. Many large capacity anode materials (such as Ge) do not have sufficiently high electronic and ionic conductivities required for high-rate cycling. Here, we report a novel ternary compound, copper germanium phosphide (CuGe 2 P 3 ), as a high-rate anode. Being synthesized via a facile and scalable mechanochemistry method, CuGe 2 P 3 has a cation-disordered sphalerite structure and offers higher ionic and electronic conductivities and better tolerance to volume change during cycling than Ge, as confirmed by first principles calculations and experimental characterization, including high-resolution synchrotron X-ray diffraction, HRTEM, SAED, XPS and Raman spectroscopy. Furthermore, the results suggest that CuGe 2 P 3 has a reversible Li-storage mechanism of conversion reaction. When composited with graphite by virtue of a two-stage ball-milling process, the yolk–shell structure of the amorphous carbon-coated CuGe 2 P 3 nanocomposite (CuGe 2 P 3 /C@Graphene) delivers a high initial coulombic efficiency (91%), a superior cycling stability (1312 mA h g −1 capacity after 600 cycles at 0.2 A g −1 and 876 mA h g −1 capacity after 1600 cycles at 2 A g −1 ), andmore »
-
Cobalt telluride anchored to nitrogen-rich carbon dodecahedra (CoTe@NCD) was synthesized by simultaneous pyrolysis-tellurium melt impregnation of ZIF-67 MOFs. The purely thermal method involved no secondary chemicals and no waste byproducts. The result is a microstructure consisting of nanoscale 86 wt% CoTe intermetallic nanoparticles contained within a thin N-rich carbon matrix. During electrochemical cycling, the 21 nm average diameter CoTe provides short diffusion paths for Na + /K + ions, which in conjunction with the electrically conducting carbon matrix allow for rapid potassiation or sodiation. As potassium ion battery (PIB and KIB) and sodium ion battery (NIB and SIB) anodes, CoTe@NCD demonstrates attractive reversible capacity, promising cycling stability, and state-of-the-art rate performance. For example, as a KIB anode, the CoTe@NCD electrode exhibits a reversible capacity of 380 mA h g −1 at 50 mA g −1 and a fast charge capacity of 136 mA h g −1 at 1000 mA g −1 . As a NIB anode, it also displays excellent rate capability achieving 620 mA h g −1 at 50 mA g −1 and 345 mA h g −1 at 1000 mA g −1 .
-
Abstract Currently, there is considerable interest in developing advanced rechargeable batteries that boast efficient distribution of electricity and economic feasibility for use in large-scale energy storage systems. Rechargeable aqueous zinc batteries are promising alternatives to lithium-ion batteries in terms of rate performance, cost, and safety. In this investigation, we employ Cu3(HHTP)2, a two-dimensional (2D) conductive metal-organic framework (MOF) with large one-dimensional channels, as a zinc battery cathode. Owing to its unique structure, hydrated Zn2+ions which are inserted directly into the host structure, Cu3(HHTP)2, allow high diffusion rate and low interfacial resistance which enable the Cu3(HHTP)2cathode to follow the intercalation pseudocapacitance mechanism. Cu3(HHTP)2exhibits a high reversible capacity of 228 mAh g−1at 50 mA g−1. At a high current density of 4000 mA g−1(~18 C), 75.0% of the initial capacity is maintained after 500 cycles. These results provide key insights into high-performance, 2D conductive MOF designs for battery electrodes.
-
Conventional lithium-ion batteries are unable to meet the increasing demands for high-energy storage systems, because of their limited theoretical capacity. 1 In recent years, intensive attention has been paid to enhancing battery energy storage capability to satisfy the increasing energy demand in modern society and reduce the average energy capacity cost. Among the candidates for next generation high energy storage systems, the lithium sulfur battery is especially attractive because of its high theoretical specific energy (around 2600 W h kg-1) and potential cost reduction. In addition, sulfur is a cost effective and environmentally friendly material due to its abundance and low-toxicity. 2 Despite all of these advantages, the practical application of lithium sulfur batteries to date has been hindered by a series of obstacles, including low active material loading, poor cycle life, and sluggish sulfur conversion kinetics. 3 Achieving high mass loading cathode in the traditional 2D planar thick electrode has been challenged. The high distorsion of the traditional planar thick electrodes for ion/electron transfer leads to the limited utilization of active materials and high resistance, which eventually results in restricted energy density and accelerated electrode failure. 4 Furthermore, of the electrolyte to pores in the cathode and utilization ratiomore »