Abstract Soil carbon (C) and nitrogen (N) cycles and their complex responses to environmental changes have received increasing attention. However, large uncertainties in model predictions remain, partially due to the lack of explicit representation and parameterization of microbial processes. One great challenge is to effectively integrate rich microbial functional traits into ecosystem modeling for better predictions. Here, using soil enzymes as indicators of soil function, we developed a competitive dynamic enzyme allocation scheme and detailed enzyme‐mediated soil inorganic N processes in the Microbial‐ENzyme Decomposition (MEND) model. We conducted a rigorous calibration and validation of MEND with diverse soil C‐N fluxes, microbial C:N ratios, and functional gene abundances from a 12‐year CO2 × N grassland experiment (BioCON) in Minnesota, USA. In addition to accurately simulating soil CO2fluxes and multiple N variables, the model correctly predicted microbial C:N ratios and their negative response to enriched N supply. Model validation further showed that, compared to the changes in simulated enzyme concentrations and decomposition rates, the changes in simulated activities of eight C‐N‐associated enzymes were better explained by the measured gene abundances in responses to elevated atmospheric CO2concentration. Our results demonstrated that using enzymes as indicators of soil function and validating model predictions with functional gene abundances in ecosystem modeling can provide a basis for testing hypotheses about microbially mediated biogeochemical processes in response to environmental changes. Further development and applications of the modeling framework presented here will enable microbial ecologists to address ecosystem‐level questions beyond empirical observations, toward more predictive understanding, an ultimate goal of microbial ecology.
more »
« less
Long-term nitrogen deposition enhances microbial capacities in soil carbon stabilization but reduces network complexity
Abstract BackgroundAnthropogenic activities have increased the inputs of atmospheric reactive nitrogen (N) into terrestrial ecosystems, affecting soil carbon stability and microbial communities. Previous studies have primarily examined the effects of nitrogen deposition on microbial taxonomy, enzymatic activities, and functional processes. Here, we examined various functional traits of soil microbial communities and how these traits are interrelated in a Mediterranean-type grassland administrated with 14 years of 7 g m−2year−1of N amendment, based on estimated atmospheric N deposition in areas within California, USA, by the end of the twenty-first century. ResultsSoil microbial communities were significantly altered by N deposition. Consistent with higher aboveground plant biomass and litter, fast-growing bacteria, assessed by abundance-weighted average rRNA operon copy number, were favored in N deposited soils. The relative abundances of genes associated with labile carbon (C) degradation (e.g.,amyAandcda) were also increased. In contrast, the relative abundances of functional genes associated with the degradation of more recalcitrant C (e.g.,mannanaseandchitinase) were either unchanged or decreased. Compared with the ambient control, N deposition significantly reduced network complexity, such as average degree and connectedness. The network for N deposited samples contained only genes associated with C degradation, suggesting that C degradation genes became more intensely connected under N deposition. ConclusionsWe propose a conceptual model to summarize the mechanisms of how changes in above- and belowground ecosystems by long-term N deposition collectively lead to more soil C accumulation.
more »
« less
- PAR ID:
- 10370445
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Microbiome
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2049-2618
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Nitrogen (N) deposition increases soil carbon (C) storage by reducing microbial activity. These effects vary in soil beneath trees that associate with arbuscular (AM) and ectomycorrhizal (ECM) fungi. Variation in carbon C and N uptake traits among microbes may explain differences in soil nutrient cycling between mycorrhizal associations in response to high N loads, a mechanism not previously examined due to methodological limitations. Here, we used quantitative Stable Isotope Probing (qSIP) to measure bacterial C and N assimilation rates from an added organic compound, which we conceptualize as functional traits. As such, we applied a trait‐based approach to explore whether variation in assimilation rates of bacterial taxa can inform shifts in soil function under chronic N deposition. We show taxon‐specific and community‐wide declines of bacterial C and N uptake under chronic N deposition in both AM and ECM soils. N deposition‐induced reductions in microbial activity were mirrored by declines in soil organic matter mineralization rates in AM but not ECM soils. Our findings suggest C and N uptake traits of bacterial communities can predict C cycling feedbacks to N deposition in AM soils, but additional data, for instance on the traits of fungi, may be needed to connect microbial traits with soil C and N cycling in ECM systems. Our study also highlights the potential of employing qSIP in conjunction with trait‐based analytical approaches to inform how ecological processes of microbial communities influence soil functioning.more » « less
-
Abstract Ecosystem functional responses such as soil CO2emissions are constrained by microclimate, available carbon (C) substrates and their effects upon microbial activity. In tropical forests, phosphorus (P) is often considered as a limiting factor for plant growth, but it is still not clear whether P constrains microbial CO2emissions from soils. In this study, we incubated seven tropical forest soils from Brazil and Puerto Rico with different nutrient addition treatments (no addition, Control; C, nitrogen (N) or P addition only; and combined C, N and P addition (CNP)). Cumulative soil CO2emissions were fit with a Gompertz model to estimate potential maximum cumulative soil CO2emission (Cm) and the rate of change of soil C decomposition (k). Quantitative polymerase chain reaction (qPCR) was conducted to quantify microbial biomass as bacteria and fungi. Results showed that P addition alone or in combination with C and N enhancedCm, whereas N addition usually reducedCm, and neither N nor P affected microbial biomass. Additions of CNP enhancedk, increased microbial abundances and altered fungal to bacterial ratios towards higher fungal abundance. Additions of CNP, however, tended to reduceCmfor most soils when compared to C additions alone, suggesting that microbial growth associated with nutrient additions may have occurred at the expense of C decomposition. Overall, this study demonstrates that soil CO2emission is more limited by P than N in tropical forest soils and those effects were stronger in soils low in P. HighlightsA laboratory incubation study was conducted with nitrogen, phosphorus or carbon addition to tropical forest soils. Soil CO2emission was fitted with a Gompertz model and soil microbial abundance was quantified using qPCR. Phosphorus addition increased model parametersCmand soil CO2emission, particularly in the Puerto Rico soils. Soil CO2emission was more limited by phosphorus than nitrogen in tropical forest soils.more » « less
-
Abstract Fine root litter is a primary source of soil organic matter (SOM), which is a globally important pool of C that is responsive to climate change. We previously established that ~20 years of experimental nitrogen (N) deposition has slowed fine root decay and increased the storage of soil carbon (C; +18%) across a widespread northern hardwood forest ecosystem. However, the microbial mechanisms that have directly slowed fine root decay are unknown. Here, we show that experimental N deposition has decreased the relative abundance of Agaricales fungi (−31%) and increased that of partially ligninolytic Actinobacteria (+24%) on decaying fine roots. Moreover, experimental N deposition has increased the relative abundance of lignin‐derived compounds residing in SOM (+53%), and this biochemical response is significantly related to shifts in both fungal and bacterial community composition. Specifically, the accumulation of lignin‐derived compounds in SOM is negatively related to the relative abundance of ligninolyticMycenaandKuehneromycesfungi, and positively related to Microbacteriaceae. Our findings suggest that by altering the composition of microbial communities on decaying fine roots such that their capacity for lignin degradation is reduced, experimental N deposition has slowed fine root litter decay, and increased the contribution of lignin‐derived compounds from fine roots to SOM. The microbial responses we observed may explain widespread findings that anthropogenic N deposition increases soil C storage in terrestrial ecosystems. More broadly, our findings directly link composition to function in soil microbial communities, and implicate compositional shifts in mediating biogeochemical processes of global significance.more » « less
-
Abstract Decadal scale lake drying in interior Alaska results in lake margin colonization by willow shrub and graminoid vegetation, but the effects of these changes on plant production, biodiversity, soil properties, and soil microbial communities are not well known. We studied changes in soil organic carbon (SOC) and nitrogen (N) storage, plant and microbial community composition, and soil microbial activities in drying and non‐drying lakes in the Yukon Flats National Wildlife Refuge. Historic changes in lake area were determined using Landsat imagery. Results showed that SOC storage in drying lake margins declined by 0.13 kg C m−2 yr−1over 30 years of exposure of lake sediments, with no significant change in soil N. Lake drying resulted in an increase in graminoid and shrub aboveground net primary production (ANPP, +3% yr−1) with little change in plant functional composition. Increases in ANPP were similar in magnitude (but opposite in sign) to losses in SOC over a 30‐year drying trend. Potential decomposition rates and soil enzyme activities were lower in drying lake margins compared to stable lake margins, possibly due to high salinities in drying lake margin soils. Microbial communities shifted in response to changing plant communities, although they still retained a legacy of the previous plant community. Understanding how changing lake hydrology impacts the ecology and biogeochemistry of lake margin terrestrial ecosystems is an underexamined phenomenon with large impacts to landscape processes.more » « less