skip to main content


Title: Induction and inhibition of Drosophila X chromosome gene expression are both impeded by the dosage compensation complex
Abstract

Sex chromosomes frequently differ from the autosomes in the frequencies of genes with sexually dimorphic or tissue-specific expression. Multiple hypotheses have been put forth to explain the unique gene content of the X chromosome, including selection against male-beneficial X-linked alleles, expression limits imposed by the haploid dosage of the X in males, and interference by the dosage compensation complex on expression in males. Here, we investigate these hypotheses by examining differential gene expression in Drosophila melanogaster following several treatments that have widespread transcriptomic effects: bacterial infection, viral infection, and abiotic stress. We found that genes that are induced (upregulated) by these biotic and abiotic treatments are frequently under-represented on the X chromosome, but so are those that are repressed (downregulated) following treatment. We further show that whether a gene is bound by the dosage compensation complex in males can largely explain the paucity of both up- and downregulated genes on the X chromosome. Specifically, genes that are bound by the dosage compensation complex, or close to a dosage compensation complex high-affinity site, are unlikely to be up- or downregulated after treatment. This relationship, however, could partially be explained by a correlation between differential expression and breadth of expression across tissues. Nonetheless, our results suggest that dosage compensation complex binding, or the associated chromatin modifications, inhibit both up- and downregulation of X chromosome gene expression within specific contexts, including tissue-specific expression. We propose multiple possible mechanisms of action for the effect, including a role of Males absent on the first, a component of the dosage compensation complex, as a dampener of gene expression variance in both males and females. This effect could explain why the Drosophila X chromosome is depauperate in genes with tissue-specific or induced expression, while the mammalian X has an excess of genes with tissue-specific expression.

 
more » « less
Award ID(s):
1845686
NSF-PAR ID:
10370533
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
G3 Genes|Genomes|Genetics
Volume:
12
Issue:
9
ISSN:
2160-1836
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Palli, Subba Reddy (Ed.)
    The transformer ( tra ) gene is essential for female development in many insect species, including the Australian sheep blow fly, Lucilia cuprina . Sex-specific tra RNA splicing is controlled by Sex lethal ( Sxl ) in Drosophila melanogaster but is auto-regulated in L . cuprina . Sxl also represses X chromosome dosage compensation in female D . melanogaster . We have developed conditional Lctra RNAi knockdown strains using the tet-off system. Four strains did not produce females on diet without tetracycline and could potentially be used for genetic control of L . cuprina . In one strain, which showed both maternal and zygotic tTA expression, most XX transformed males died at the pupal stage. RNAseq and qRT-PCR analyses of mid-stage pupae showed increased expression of X-linked genes in XX individuals. These results suggest that Lctra promotes somatic sexual differentiation and inhibits X chromosome dosage compensation in female L . cuprina . However, XX flies homozygous for a loss-of-function Lctra knockin mutation were fully transformed and showed high pupal eclosion. Two of five X-linked genes examined showed a significant increase in mRNA levels in XX males. The stronger phenotype in the RNAi knockdown strain could indicate that maternal Lctra expression may be essential for initiation of dosage compensation suppression in female embryos. 
    more » « less
  2. Abstract

    Early lineage diversification is central to understand what mutational events drive species divergence. Particularly, gene misregulation in interspecific hybrids can inform about what genes and pathways underlie hybrid dysfunction. InDrosophilahybrids, how regulatory evolution impacts different reproductive tissues remains understudied. Here, we generate a new genome assembly and annotation inDrosophila willistoniand analyse the patterns of transcriptome divergence between two allopatrically evolvedD. willistonisubspecies, their male sterile and female fertile hybrid progeny across testis, male accessory gland, and ovary. Patterns of transcriptome divergence and modes of regulatory evolution were tissue‐specific. Despite no indication for cell‐type differences in hybrid testis, this tissue exhibited the largest magnitude of expression differentiation between subspecies and between parentals and hybrids. No evidence for anomalous dosage compensation in hybrid male tissues was detected nor was a differential role for the neo‐ and the ancestral arms of theD. willistoni Xchromosome. Compared to the autosomes, theXchromosome appeared enriched for transgressively expressed genes in testis despite being the least differentiated in expression between subspecies. Evidence for fine genome clustering of transgressively expressed genes suggests a role of chromatin structure on hybrid gene misregulation. Lastly, transgressively expressed genes in the testis of the sterile male progeny were enriched for GO terms not typically associated with sperm function, instead hinting at anomalous development of the reproductive tissue. Our thorough tissue‐level portrait of transcriptome differentiation between recently divergedD. willistonisubspecies and their hybrids provides a more nuanced view of early regulatory changes during speciation.

     
    more » « less
  3. A major goal in evolutionary biology is to understand how natural variation is maintained in sexually selected and sexually dimorphic traits. Hypotheses to explain genetic variation in sexually selected traits include context-dependent fitness effects, epistatic interactions, and pleiotropic constraints. The house fly, Musca domestica, is a promising system to investigate how these factors affect polymorphism in sexually selected traits. Two common Y chromosomes (YM and IIIM) segregate as stable polymorphisms in natural house fly populations, appear to be locally adapted to different thermal habitats, and differentially affect male mating success. Here, we perform a meta-analysis of RNA-seq data which identifies genes encoding odorant binding proteins (in the Obp56h family) as differentially expressed between the heads of males carrying YM and IIIM Differential expression of Obp56h has been associated with variation in male mating behavior in Drosophila melanogaster. We find differences in male mating behavior between house flies carrying the Y chromosomes that are consistent with the relationship between male mating behavior and expression of Obp56h in D. melanogaster. We also find that male mating behaviors in house fly are affected by temperature, and the same temperature differentials further affect the expression of Obp56h genes. However, we show that temperature-dependent effects cannot explain the maintenance of genetic variation for male mating behavior in house fly. Using a network analysis and allele-specific expression measurements, we find evidence that the house fly IIIM chromosome is a trans regulator of Obp56h gene expression. Moreover, we find that Obp56h disproportionately affects the expression of genes on the D. melanogaster chromosome that is homologous to the house fly IIIM chromosome. This provides evidence for a conserved trans regulatory loop involving Obp56h expression that affects male mating behavior in flies. The complex regulatory architecture controlling Obp56h expression suggests that variation in male mating behavior could be maintained by epistasis or pleiotropic constraints. 
    more » « less
  4. Drosophila suzukii (D. suzukii) (Matsumura, 1931; Diptera: Drosophilidae), also known as spotted wing Drosophila , is a worldwide pest of fruits with soft skins such as blueberries and cherries. Originally from Asia, D. suzukii is now present in the Americas and Europe and has become a significant economic pest. Growers largely rely on insecticides for the control of D. suzukii . Genetic strategies offer a species-specific environmentally friendly way for suppression of D. suzukii populations. We previously developed a transgenic strain of D. suzukii that produced only males on a diet that did not contain tetracycline. The strain carried a single copy of the FL19 construct on chromosome 3. Repeated releases of an excess of FL19 males led to suppression of D. suzukii populations in laboratory cage trials. Females died as a consequence of overexpression of the tetracycline transactivator (tTA) and tTA-activated expression of the head involution defective proapoptotic gene. The aim of this study was to generate additional male-only strains that carried two copies of the FL19 transgene through crossing the original line with a piggyBac jumpstarter strain. Males that carried either two chromosome 3 or a singleX-linked transgene were identified through stronger expression of the red fluorescent protein marker gene. The brighter fluorescence of the X-linked lines was likely due to dosage compensation of the red fluorescent protein gene. In total, four X-linked lines and eleven lines with two copies on chromosome 3 were obtained, of which five were further examined. All but one of the strains produced only males on a diet without tetracycline. When crossed with wild type virgin females, all of the five two copy autosomal strains examined produced only males. However, the single copy X-linked lines did not show dominant female lethality. Five of the autosomal lines were further evaluated for productivity (egg to adult) and male competition. Based on these results, the most promising lines have been selected for future population suppression experiments with strains from different geographical locations. 
    more » « less
  5. Abstract

    Sex chromosome evolution results in the disparity in gene content between heterogametic sex chromosomes and creates the need for dosage compensation to counteract the effects of gene dose imbalance of sex chromosomes in males and females. It is not known at which stage of sex chromosome evolution dosage compensation would evolve. We used global gene expression profiling in male and female papayas to assess gene expression patterns of sex-linked genes on the papaya sex chromosomes. By analyzing expression ratios of sex-linked genes to autosomal genes and sex-linked genes in males relative to females, our results showed that dosage compensation was regulated on a gene-by-gene level rather than whole sex-linked region in papaya. Seven genes on the papaya X chromosome exhibited dosage compensation. We further compared gene expression ratios in the two evolutionary strata. Y alleles in the older evolutionary stratum showed reduced expression compared to X alleles, while Y alleles in the younger evolutionary stratum showed elevated expression compared to X alleles. Reduced expression of Y alleles in the older evolutionary stratum might be caused by accumulation of deleterious mutations in regulatory regions or transposable element-mediated methylation spreading. Most X-hemizygous genes exhibited either no or very low expression, suggesting that gene silencing might play a role in maintaining transcriptional balance between females and males.

     
    more » « less