Title: Condensin I DC , H4K20me1, and perinuclear tethering maintain X chromosome repression in C. elegans
Abstract Dosage compensation inCaenorhabditis elegansequalizes X-linked gene expression between XX hermaphrodites and XO males. The process depends on a condensin- containing dosage compensation complex (DCC), which binds the X chromosomes in hermaphrodites to repress gene expression. Condensin IDCand an additional five DCC components must be present on the X during early embryogenesis in hermaphrodites to establish dosage compensation. However, whether the DCC’s continued presence is required to maintain the repressed state once established is unknown. Beyond the role of condensin IDCin X chromosome compaction, additional mechanisms contribute to X- linked gene repression. DPY-21, a non-condensin IDCDCC component, is an H4K20me2/3 demethylase whose activity enriches the repressive histone mark, H4 lysine 20 monomethylation, on the X chromosomes. In addition, CEC-4 tethers H3K9me3-rich chromosomal regions to the nuclear lamina, which also contributes to X- linked gene repression. To investigate the necessity of condensin IDCduring the larval and adult stages of hermaphrodites, we used the auxin-inducible degradation system to deplete the condensin IDCsubunit DPY-27. While DPY-27 depletion in the embryonic stages resulted in lethality, DPY-27 depleted larvae and adults survive. In these DPY-27 depleted strains, condensin IDCwas no longer associated with the X chromosome, the X became decondensed, and the H4K20me1 mark was gradually lost, leading to X-linked gene derepression. These results suggest that the stable maintenance of dosage compensation requires the continued presence of condensin IDC. A loss-of-function mutation incec-4, in addition to the depletion of DPY-27 or the genetic mutation ofdpy- 21, led to even more significant increases in X-linked gene expression, suggesting that tethering heterochromatic regions to the nuclear lamina helps stabilize repression mediated by condensin IDCand H4K20me1. Author SummaryIn some organisms, whether an individual becomes male, female, or hermaphrodite is determined by the number of their sex chromosomes. In the nematodeCaenorhabditis elegans, males have one X chromosome, whereas hermaphrodites have two X chromosomes. This difference in the number of X chromosomes is crucial for deciding whether an individual becomes a hermaphrodite or a male. However, having two X chromosomes can lead to problems because it results in different gene expression levels, resulting in hermaphrodite lethality. To solve this issue, many organisms undergo a process called dosage compensation. Dosage compensation inC. elegansis achieved by a group of proteins known as the dosage compensation complex (DCC), which includes a protein called DPY-27. The function of DPY-27 is essential during early embryonic development. This study shows that in contrast to early embryonic development, larvae and adults can still survive when DPY-27 is missing. In these worms, all known mechanisms involved in dosage compensation are disrupted and the X is no longer repressed. Our results suggest that the maintenance of dosage compensation in nematodes is an active process, and that it is essential for survival when the organism is developing, but once fully developed, the process becomes dispensable. more »« less
Sex determination in the nematodeC.elegansis controlled by the master regulator XOL-1 during embryogenesis. Expression ofxol-1is dependent on the ratio of X chromosomes and autosomes, which differs between XX hermaphrodites and XO males. In males,xol-1is highly expressed and in hermaphrodites,xol-1is expressed at very low levels. XOL-1 activity is known to be critical for the proper development ofC.elegansmales, but its low expression was considered to be of minimal importance in the development of hermaphrodite embryos. Our study reveals that XOL-1 plays an important role as a regulator of developmental timing during hermaphrodite embryogenesis. Using a combination of imaging and bioinformatics techniques, we found that hermaphrodite embryos have an accelerated rate of cell division, as well as a more developmentally advanced transcriptional program whenxol-1is lost. Further analyses reveal that XOL-1 is responsible for regulating the timing of initiation of dosage compensation on the X chromosomes, and the appropriate expression of sex-biased transcriptional programs in hermaphrodites. We found thatxol-1mutant embryos overexpress the H3K9 methyltransferase MET-2 and have an altered H3K9me landscape. Some of these effects of the loss ofxol-1gene were reversed by the loss ofmet-2. These findings demonstrate that XOL-1 plays an important role as a developmental regulator in embryos of both sexes, and that MET-2 acts as a downstream effector of XOL-1 activity in hermaphrodites.
Meisel, Richard P.; Asgari, Danial; Schlamp, Florencia; Unckless, Robert L.; Betran, ed., E.
(, G3 Genes|Genomes|Genetics)
Abstract Sex chromosomes frequently differ from the autosomes in the frequencies of genes with sexually dimorphic or tissue-specific expression. Multiple hypotheses have been put forth to explain the unique gene content of the X chromosome, including selection against male-beneficial X-linked alleles, expression limits imposed by the haploid dosage of the X in males, and interference by the dosage compensation complex on expression in males. Here, we investigate these hypotheses by examining differential gene expression in Drosophila melanogaster following several treatments that have widespread transcriptomic effects: bacterial infection, viral infection, and abiotic stress. We found that genes that are induced (upregulated) by these biotic and abiotic treatments are frequently under-represented on the X chromosome, but so are those that are repressed (downregulated) following treatment. We further show that whether a gene is bound by the dosage compensation complex in males can largely explain the paucity of both up- and downregulated genes on the X chromosome. Specifically, genes that are bound by the dosage compensation complex, or close to a dosage compensation complex high-affinity site, are unlikely to be up- or downregulated after treatment. This relationship, however, could partially be explained by a correlation between differential expression and breadth of expression across tissues. Nonetheless, our results suggest that dosage compensation complex binding, or the associated chromatin modifications, inhibit both up- and downregulation of X chromosome gene expression within specific contexts, including tissue-specific expression. We propose multiple possible mechanisms of action for the effect, including a role of Males absent on the first, a component of the dosage compensation complex, as a dampener of gene expression variance in both males and females. This effect could explain why the Drosophila X chromosome is depauperate in genes with tissue-specific or induced expression, while the mammalian X has an excess of genes with tissue-specific expression.
Metzger, David C.H.; Porter, Imogen; Mobley, Brendan; Sandkam, Benjamin A.; Fong, Lydia J.M.; Anderson, Andrew P.; Mank, Judith E.
(, Genome Research)
Sex chromosome dosage compensation is a model to understand the coordinated evolution of transcription; however, the advanced age of the sex chromosomes in model systems makes it difficult to study how the complex regulatory mechanisms underlying chromosome-wide dosage compensation can evolve. The sex chromosomes ofPoecilia pictahave undergone recent and rapid divergence, resulting in widespread gene loss on the male Y, coupled with complete X Chromosome dosage compensation, the first case reported in a fish. The recent de novo origin of dosage compensation presents a unique opportunity to understand the genetic and evolutionary basis of coordinated chromosomal gene regulation. By combining a new chromosome-level assembly ofP. pictawith whole-genome bisulfite sequencing and RNA-seq data, we determine that the YY1 transcription factor (YY1) DNA binding motif is associated with male-specific hypomethylated regions on the X, but not the autosomes. These YY1 motifs are the result of a recent and rapid repetitive element expansion on theP. pictaX Chromosome, which is absent in closely related species that lack dosage compensation. Taken together, our results present compelling support that a disruptive wave of repetitive element insertions carrying YY1 motifs resulted in the remodeling of the X Chromosome epigenomic landscape and the rapid de novo origin of a dosage compensation system.
The transformer ( tra ) gene is essential for female development in many insect species, including the Australian sheep blow fly, Lucilia cuprina . Sex-specific tra RNA splicing is controlled by Sex lethal ( Sxl ) in Drosophila melanogaster but is auto-regulated in L . cuprina . Sxl also represses X chromosome dosage compensation in female D . melanogaster . We have developed conditional Lctra RNAi knockdown strains using the tet-off system. Four strains did not produce females on diet without tetracycline and could potentially be used for genetic control of L . cuprina . In one strain, which showed both maternal and zygotic tTA expression, most XX transformed males died at the pupal stage. RNAseq and qRT-PCR analyses of mid-stage pupae showed increased expression of X-linked genes in XX individuals. These results suggest that Lctra promotes somatic sexual differentiation and inhibits X chromosome dosage compensation in female L . cuprina . However, XX flies homozygous for a loss-of-function Lctra knockin mutation were fully transformed and showed high pupal eclosion. Two of five X-linked genes examined showed a significant increase in mRNA levels in XX males. The stronger phenotype in the RNAi knockdown strain could indicate that maternal Lctra expression may be essential for initiation of dosage compensation suppression in female embryos.
Lin, Josephine; Zhang, Jinli; Ma, Li; Fang, He; Ma, Rui; Groneck, Camille; Filippova, Galina_N; Deng, Xinxian; Kinoshita, Chizuru; Young, Jessica_E; et al
(, Biology of Sex Differences)
Abstract BackgroundX chromosome inactivation (XCI) is a female-specific process in which one X chromosome is silenced to balance X-linked gene expression between the sexes. XCI is initiated in early development by upregulation of the lncRNAXiston the future inactive X (Xi). A subset of X-linked genes escape silencing and thus have higher expression in females, suggesting female-specific functions. One of these genes is the highly conserved geneKdm6a, which encodes a histone demethylase that removes methyl groups at H3K27 to facilitate gene expression.KDM6Amutations have been implicated in congenital disorders such as Kabuki Syndrome, as well as in sex differences in development and cancer. MethodsKdm6awas knocked out (KO) using CRISPR/Cas9 gene editing in hybrid female mouse embryonic stem (ES) cells derived either from a 129 × Mus castaneus(cast) cross or a BL6 xcastcross. In one of the lines a transcriptional stop signal inserted inTsixresults in completely skewed X silencing upon differentiation. The effects of both homozygous and heterozygousKdm6aKO onXistexpression during the onset of XCI were measured by RT-PCR and RNA-FISH. Changes in gene expression and in H3K27me3 enrichment were investigated using allele-specific RNA-seq and Cut&Run, respectively. KDM6A binding to theXistgene was characterized by Cut&Run. ResultsWe observed impaired upregulation ofXistand reduced coating of the Xi during early stages of differentiation inKdm6aKO cells, both homozygous and heterozygous, suggesting a threshold effect of KDM6A. This was associated with aberrant overexpression of genes from the Xi after differentiation, indicating loss of X inactivation potency. Consistent with KDM6A having a direct role inXistregulation, we found that the histone demethylase binds to theXistpromoter and KO cells show an increase in H3K27me3 atXist, consistent with reduced expression. ConclusionsThese results reveal a novel female-specific role for the X-linked histone demethylase, KDM6A in the initiation of XCI through histone demethylase-dependent activation ofXistduring early differentiation. Plain language summaryX chromosome inactivation is a female-specific mechanism that evolved to balance sex-linked gene dosage between females (XX) and males (XY) by silencing one X chromosome in females. X inactivation begins with the upregulation of the long noncoding RNAXiston the future inactive X chromosome. While most genes become silenced on the inactive X chromosome some genes escape inactivation and thus have higher expression in females compared to males, suggesting that escape genes may have female-specific functions. One such gene encodes the histone demethylase KDM6A which function is to turn on gene expression by removing repressive histone modifications. In this study, we investigated the role of KDM6A in the regulation ofXistexpression during the onset of X inactivation. We found that KDM6A binds to theXistgene to remove repressive histone marks and facilitate its expression in early development. Indeed, depletion of KDM6A prevents upregulation ofXistdue to abnormal persistence of repressive histone modifications. In turn, this results in aberrant overexpression of genes from the inactive X chromosome. Our findings point to a novel mechanism ofXistregulation during the initiation of X inactivation, which may lead to new avenues of treatment to alleviate congenital disorders such as Kabuki syndrome and sex-biased immune disorders where X-linked gene dosage is perturbed.
Trombley, Jessica, Rakozy, Audry I, Jash, Eshna, and Csankovszki, Györgyi. Condensin I DC , H4K20me1, and perinuclear tethering maintain X chromosome repression in C. elegans. Retrieved from https://par.nsf.gov/biblio/10548821. Web. doi:10.1101/2024.04.05.588224.
Trombley, Jessica, Rakozy, Audry I, Jash, Eshna, & Csankovszki, Györgyi. Condensin I DC , H4K20me1, and perinuclear tethering maintain X chromosome repression in C. elegans. Retrieved from https://par.nsf.gov/biblio/10548821. https://doi.org/10.1101/2024.04.05.588224
@article{osti_10548821,
place = {Country unknown/Code not available},
title = {Condensin I DC , H4K20me1, and perinuclear tethering maintain X chromosome repression in C. elegans},
url = {https://par.nsf.gov/biblio/10548821},
DOI = {10.1101/2024.04.05.588224},
abstractNote = {Abstract Dosage compensation inCaenorhabditis elegansequalizes X-linked gene expression between XX hermaphrodites and XO males. The process depends on a condensin- containing dosage compensation complex (DCC), which binds the X chromosomes in hermaphrodites to repress gene expression. Condensin IDCand an additional five DCC components must be present on the X during early embryogenesis in hermaphrodites to establish dosage compensation. However, whether the DCC’s continued presence is required to maintain the repressed state once established is unknown. Beyond the role of condensin IDCin X chromosome compaction, additional mechanisms contribute to X- linked gene repression. DPY-21, a non-condensin IDCDCC component, is an H4K20me2/3 demethylase whose activity enriches the repressive histone mark, H4 lysine 20 monomethylation, on the X chromosomes. In addition, CEC-4 tethers H3K9me3-rich chromosomal regions to the nuclear lamina, which also contributes to X- linked gene repression. To investigate the necessity of condensin IDCduring the larval and adult stages of hermaphrodites, we used the auxin-inducible degradation system to deplete the condensin IDCsubunit DPY-27. While DPY-27 depletion in the embryonic stages resulted in lethality, DPY-27 depleted larvae and adults survive. In these DPY-27 depleted strains, condensin IDCwas no longer associated with the X chromosome, the X became decondensed, and the H4K20me1 mark was gradually lost, leading to X-linked gene derepression. These results suggest that the stable maintenance of dosage compensation requires the continued presence of condensin IDC. A loss-of-function mutation incec-4, in addition to the depletion of DPY-27 or the genetic mutation ofdpy- 21, led to even more significant increases in X-linked gene expression, suggesting that tethering heterochromatic regions to the nuclear lamina helps stabilize repression mediated by condensin IDCand H4K20me1. Author SummaryIn some organisms, whether an individual becomes male, female, or hermaphrodite is determined by the number of their sex chromosomes. In the nematodeCaenorhabditis elegans, males have one X chromosome, whereas hermaphrodites have two X chromosomes. This difference in the number of X chromosomes is crucial for deciding whether an individual becomes a hermaphrodite or a male. However, having two X chromosomes can lead to problems because it results in different gene expression levels, resulting in hermaphrodite lethality. To solve this issue, many organisms undergo a process called dosage compensation. Dosage compensation inC. elegansis achieved by a group of proteins known as the dosage compensation complex (DCC), which includes a protein called DPY-27. The function of DPY-27 is essential during early embryonic development. This study shows that in contrast to early embryonic development, larvae and adults can still survive when DPY-27 is missing. In these worms, all known mechanisms involved in dosage compensation are disrupted and the X is no longer repressed. Our results suggest that the maintenance of dosage compensation in nematodes is an active process, and that it is essential for survival when the organism is developing, but once fully developed, the process becomes dispensable.},
journal = {},
publisher = {bioRxiv},
author = {Trombley, Jessica and Rakozy, Audry I and Jash, Eshna and Csankovszki, Györgyi},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.