Abstract Consider $$(X_{i}(t))$$ ( X i ( t ) ) solving a system of N stochastic differential equations interacting through a random matrix $${\mathbf {J}} = (J_{ij})$$ J = ( J ij ) with independent (not necessarily identically distributed) random coefficients. We show that the trajectories of averaged observables of $$(X_i(t))$$ ( X i ( t ) ) , initialized from some $$\mu $$ μ independent of  $${\mathbf {J}}$$ J , are universal, i.e., only depend on the choice of the distribution $$\mathbf {J}$$ J through its first and second moments (assuming e.g., sub-exponential tails). We take a general combinatorial approach to proving universality for dynamical systems with random coefficients, combining a stochastic Taylor expansion with a moment matching-type argument. Concrete settings for which our results imply universality include aging in the spherical SK spin glass, and Langevin dynamics and gradient flows for symmetric and asymmetric Hopfield networks. 
                        more » 
                        « less   
                    
                            
                            Subconvexity in Inhomogeneous Vinogradov Systems
                        
                    
    
            Abstract When k and s are natural numbers and $${\mathbf h}\in {\mathbb Z}^k$$, denote by $$J_{s,k}(X;\,{\mathbf h})$$ the number of integral solutions of the system $$ \sum_{i=1}^s(x_i^j-y_i^j)=h_j\quad (1\leqslant j\leqslant k), $$ with $$1\leqslant x_i,y_i\leqslant X$$. When $$s\lt k(k+1)/2$$ and $$(h_1,\ldots ,h_{k-1})\ne {\mathbf 0}$$, Brandes and Hughes have shown that $$J_{s,k}(X;\,{\mathbf h})=o(X^s)$$. In this paper we improve on quantitative aspects of this result, and, subject to an extension of the main conjecture in Vinogradov’s mean value theorem, we obtain an asymptotic formula for $$J_{s,k}(X;\,{\mathbf h})$$ in the critical case $s=k(k+1)/2$. The latter requires minor arc estimates going beyond square-root cancellation. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10370549
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- The Quarterly Journal of Mathematics
- Volume:
- 74
- Issue:
- 1
- ISSN:
- 0033-5606
- Page Range / eLocation ID:
- p. 389-418
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We study the problem of robust multivariate polynomial regression: let p\colon\mathbb{R}^n\to\mathbb{R} be an unknown n-variate polynomial of degree at most d in each variable. We are given as input a set of random samples (\mathbf{x}_i,y_i) \in [-1,1]^n \times \mathbb{R} that are noisy versions of (\mathbf{x}_i,p(\mathbf{x}_i)). More precisely, each \mathbf{x}_i is sampled independently from some distribution \chi on [-1,1]^n, and for each i independently, y_i is arbitrary (i.e., an outlier) with probability at most \rho < 1/2, and otherwise satisfies |y_i-p(\mathbf{x}_i)|\leq\sigma. The goal is to output a polynomial \hat{p}, of degree at most d in each variable, within an \ell_\infty-distance of at most O(\sigma) from p. Kane, Karmalkar, and Price [FOCS'17] solved this problem for n=1. We generalize their results to the n-variate setting, showing an algorithm that achieves a sample complexity of O_n(d^n\log d), where the hidden constant depends on n, if \chi is the n-dimensional Chebyshev distribution. The sample complexity is O_n(d^{2n}\log d), if the samples are drawn from the uniform distribution instead. The approximation error is guaranteed to be at most O(\sigma), and the run-time depends on \log(1/\sigma). In the setting where each \mathbf{x}_i and y_i are known up to N bits of precision, the run-time's dependence on N is linear. We also show that our sample complexities are optimal in terms of d^n. Furthermore, we show that it is possible to have the run-time be independent of 1/\sigma, at the cost of a higher sample complexity.more » « less
- 
            Abstract When$$k\geqslant 4$$and$$0\leqslant d\leqslant (k-2)/4$$, we consider the system of Diophantine equations\begin{align*}x_1^j+\ldots +x_k^j=y_1^j+\ldots +y_k^j\quad (1\leqslant j\leqslant k,\, j\ne k-d).\end{align*}We show that in this cousin of a Vinogradov system, there is a paucity of non-diagonal positive integral solutions. Our quantitative estimates are particularly sharp when$$d=o\!\left(k^{1/4}\right)$$.more » « less
- 
            We first introduce and study the notion of multi-weighted blow-ups, which is later used to systematically construct an explicit yet efficient algorithm for functorial logarithmic resolution in characteristic zero, in the sense of Hironaka. Specifically, for a singular, reduced closed subscheme $$X$$ of a smooth scheme $$Y$$ over a field of characteristic zero, we resolve the singularities of $$X$$ by taking proper transforms $$X_i \subset Y_i$$ along a sequence of multi-weighted blow-ups $$Y_N \to Y_{N-1} \to \dotsb \to Y_0 = Y$$ which satisfies the following properties: (i) the $$Y_i$$ are smooth Artin stacks with simple normal crossing exceptional loci; (ii) at each step we always blow up the worst singular locus of $$X_i$$, and witness on $$X_{i+1}$$ an immediate improvement in singularities; (iii) and finally, the singular locus of $$X$$ is transformed into a simple normal crossing divisor on $$X_N$$. Comment: Final published versionmore » « less
- 
            Abstract Isotonic regression is a standard problem in shape-constrained estimation where the goal is to estimate an unknown non-decreasing regression function $$f$$ from independent pairs $$(x_i, y_i)$$ where $${\mathbb{E}}[y_i]=f(x_i), i=1, \ldots n$$. While this problem is well understood both statistically and computationally, much less is known about its uncoupled counterpart, where one is given only the unordered sets $$\{x_1, \ldots , x_n\}$$ and $$\{y_1, \ldots , y_n\}$$. In this work, we leverage tools from optimal transport theory to derive minimax rates under weak moments conditions on $$y_i$$ and to give an efficient algorithm achieving optimal rates. Both upper and lower bounds employ moment-matching arguments that are also pertinent to learning mixtures of distributions and deconvolution.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
