skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: LoVoCCS. I. Survey Introduction, Data Processing Pipeline, and Early Science Results
Abstract We present the Local Volume Complete Cluster Survey (LoVoCCS; we pronounce it as “low-vox” or “law-vox,” with stress on the second syllable), an NSF’s National Optical-Infrared Astronomy Research Laboratory survey program that uses the Dark Energy Camera to map the dark matter distribution and galaxy population in 107 nearby (0.03 <z< 0.12) X-ray luminous ([0.1–2.4 keV]LX500> 1044erg s−1) galaxy clusters that are not obscured by the Milky Way. The survey will reach Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) Year 1–2 depth (for galaxiesr= 24.5,i= 24.0, signal-to-noise ratio (S/N) > 20;u= 24.7,g= 25.3,z= 23.8, S/N > 10) and conclude in ∼2023 (coincident with the beginning of LSST science operations), and will serve as a zeroth-year template for LSST transient studies. We process the data using the LSST Science Pipelines that include state-of-the-art algorithms and analyze the results using our own pipelines, and therefore the catalogs and analysis tools will be compatible with the LSST. We demonstrate the use and performance of our pipeline using three X-ray luminous and observation-time complete LoVoCCS clusters: A3911, A3921, and A85. A3911 and A3921 have not been well studied previously by weak lensing, and we obtain similar lensing analysis results for A85 to previous studies. (We mainly use A3911 to show our pipeline and give more examples in the Appendix.)  more » « less
Award ID(s):
1815475 2108287
PAR ID:
10370632
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
933
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 84
Size(s):
Article No. 84
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Local Volume Complete Cluster Survey is an ongoing program to observe nearly a hundred low-redshift X-ray-luminous galaxy clusters (redshifts 0.03 <z< 0.12 and X-ray luminosities in the 0.1–2.4 keV bandLX500c> 1044erg s−1) with the Dark Energy Camera, capturing data in theu,g,r,i,zbands with a 5σpoint source depth of approximately 25th–26th AB magnitudes. Here, we map the aperture masses in 58 galaxy cluster fields using weak gravitational lensing. These clusters span a variety of dynamical states, from nearly relaxed to merging systems, and approximately half of them have not been subject to detailed weak lensing analysis before. In each cluster field, we analyze the alignment between the 2D mass distribution described by the aperture mass map, the 2D red-sequence (RS) galaxy distribution, and the brightest cluster galaxy (BCG). We find that the orientations of the BCG and the RS distribution are strongly aligned throughout the interiors of the clusters: the median misalignment angle is 19° within 2 Mpc. We also observe the alignment between the orientations of the RS distribution and the overall cluster mass distribution (by a median difference of 32° within 1 Mpc), although this is constrained by galaxy shape noise and the limitations of our cluster sample size. These types of alignment suggest long-term dynamical evolution within the clusters over cosmic timescales. 
    more » « less
  2. Abstract We present a mock catalog of gravitationally-lensed quasars atzqso< 7.5 with simulated images for the Rubin Observatory Legacy Survey of Space and Time (LSST). We adopt recent measurements of quasar-luminosity functions to model the quasar population, and use the CosmoDC2 mock galaxy catalog to model the deflector galaxies, which successfully reproduces the observed galaxy-velocity dispersion functions up tozd∼ 1.5. The mock catalog is highly complete for lensed quasars with Einstein radiusθE> 0.″07 and quasar absolute magnitudeMi< − 20. We estimate that there are ∼103lensed quasars discoverable in current imaging surveys, and LSST will increase this number to ∼ 2.4 × 103. Most of the lensed quasars have image separation Δθ> 0.″5, which will at least be marginally resolved in LSST images with seeing of ∼0.″7. There will be ∼200 quadruply-lensed quasars discoverable in the LSST. The fraction of quad lenses among all discoverable lensed quasars is about ∼10%–15%, and this fraction decreases with survey depth. This mock catalog shows a large diversity in the observational features of lensed quasars, in terms of lensing separation and quasar-to-deflector flux ratio. We discuss possible strategies for a complete search of lensed quasars in the LSST era. 
    more » « less
  3. Context.Large-scale environment is one of the main physical drivers of galaxy evolution. The densest regions at high redshifts (i.e.z > 2 protoclusters) are gas-rich regions characterised by high star formation activity. The same physical properties that enhance star formation in protoclusters are also thought to boost the growth of supermassive black holes (SMBHs), most likely in heavily obscured conditions. Aims.We aim to test this scenario by probing the active galactic nucleus (AGN) content of SPT2349–56: a massive, gas-rich, and highly star-forming protocluster core atz = 4.3 discovered as an overdensity of dusty star-forming galaxies (DSFGs). We compare our results with data on the field environment and other protoclusters. Methods.We observed SPT2349–56 withChandra(200 ks) and searched for X-ray emission from the known galaxy members. We also performed a spectral energy distribution fitting procedure to derive the physical properties of the discovered AGNs. Results.In the X-ray band, we detected two protocluster members: C1 and C6, corresponding to an AGN fraction among DSFGs in the structure of ≈10%. This value is consistent with other protoclusters atz  =  2 − 4, but higher than the AGN incidence among DSFGs in the field environment. Both AGNs are heavily obscured sources, hosted in star-forming galaxies with ≈3 × 1010 Mstellar masses. We estimate that the intergalactic medium in the host galaxies contributes to a significant fraction (or even entirely) to the nuclear obscuration. In particular, C1 is a highly luminous (LX = 2 × 1045 erg s−1) and Compton-thick (NH = 2 × 1024 cm−2) AGN, likely powered by aMBH > 6 × 108 MSMBH, assuming Eddington-limited accretion. Its high accretion rate suggests that it is in the phase of efficient growth that is generally required to explain the presence of extremely massive SMBHs in the centres of local galaxy clusters. Considering SPT2349–56 and DRC, a similar protocuster atz = 4, and under different assumptions on their volumes, we find that gas-rich protocluster cores atz ≈ 4 enhance the triggering of luminous (logLX/erg s−1 = 45 − 46) AGNs by three to five orders of magnitude with respect to the predictions from the AGN X-ray luminosity function at a similar redshift in the field environment. We note that this result is not solely driven by the overdensity of the galaxy population in the structures. Conclusions.Our results indicate that gas-rich protoclusters at high redshift boost the growth of SMBHs, which will likely impact the subsequent evolution of the structures. Therefore, they stand as key science targets to obtain a complete understanding of the relation between the environment and galaxy evolution. Dedicated investigations of similar protoclusters are required to definitively confirm this conclusion with a higher statistical significance. 
    more » « less
  4. Which galaxies in the general population turn into active galactic nuclei (AGNs) is a keystone of galaxy formation and evolution. Thanks to SRG/eROSITA’s contiguous 140 square degree pilot survey field, we constructed a large, complete, and unbiased soft X-ray flux-limited ( F X  > 6.5 × 10 −15 erg s −1 cm −2 ) AGN sample at low redshift, 0.05 <  z  < 0.55. Two summary statistics, the clustering using spectra from SDSS-V and galaxy-galaxy lensing with imaging from HSC, are measured and interpreted with halo occupation distribution and abundance matching models. Both models successfully account for the observations. We obtain an exceptionally complete view of the AGN halo occupation distribution. The population of AGNs is broadly distributed among halos with a mean mass of 3.9 −2.4 +2.0  × 10 12   M ⊙ . This corresponds to a large-scale halo bias of b ( z  = 0.34) = 0.99 −0.10 +0.08 . The central occupation has a large transition parameter, σ log 10 ( M )  = 1.28 ± 0.2. The satellite occupation distribution is characterized by a shallow slope, α sat  = 0.73 ± 0.38. We find that AGNs in satellites are rare, with f sat  < 20%. Most soft X-ray-selected AGNs are hosted by central galaxies in their dark matter halo. A weak correlation between soft X-ray luminosity and large-scale halo bias is confirmed (3.3 σ ). We discuss the implications of environmental-dependent AGN triggering. This study paves the way toward fully charting, in the coming decade, the coevolution of X-ray AGNs, their host galaxies, and dark matter halos by combining eROSITA with SDSS-V, 4MOST, DESI, LSST, and Euclid data. 
    more » « less
  5. Abstract We present the Cardinal mock galaxy catalogs, a new version of the Buzzard simulation that has been updated to support ongoing and future cosmological surveys, including the Dark Energy Survey (DES), DESI, and LSST. These catalogs are based on a one-quarter sky simulation populated with galaxies out to a redshift ofz= 2.35 to a depth ofmr= 27. Compared to the Buzzard mocks, the Cardinal mocks include an updated subhalo abundance matching model that considers orphan galaxies and includes mass-dependent scatter between galaxy luminosity and halo properties. This model can simultaneously fit galaxy clustering and group–galaxy cross-correlations measured in three different luminosity threshold samples. The Cardinal mocks also feature a new color assignment model that can simultaneously fit color-dependent galaxy clustering in three different luminosity bins. We have developed an algorithm that uses photometric data to further improve the color assignment model and have also developed a novel method to improve small-scale lensing below the ray-tracing resolution. These improvements enable the Cardinal mocks to accurately reproduce the abundance of galaxy clusters and the properties of lens galaxies in the DES data. As such, these simulations will be a valuable tool for future cosmological analyses based on large sky surveys. 
    more » « less