skip to main content

Title: LoVoCCS. I. Survey Introduction, Data Processing Pipeline, and Early Science Results

We present the Local Volume Complete Cluster Survey (LoVoCCS; we pronounce it as “low-vox” or “law-vox,” with stress on the second syllable), an NSF’s National Optical-Infrared Astronomy Research Laboratory survey program that uses the Dark Energy Camera to map the dark matter distribution and galaxy population in 107 nearby (0.03 <z< 0.12) X-ray luminous ([0.1–2.4 keV]LX500> 1044erg s−1) galaxy clusters that are not obscured by the Milky Way. The survey will reach Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) Year 1–2 depth (for galaxiesr= 24.5,i= 24.0, signal-to-noise ratio (S/N) > 20;u= 24.7,g= 25.3,z= 23.8, S/N > 10) and conclude in ∼2023 (coincident with the beginning of LSST science operations), and will serve as a zeroth-year template for LSST transient studies. We process the data using the LSST Science Pipelines that include state-of-the-art algorithms and analyze the results using our own pipelines, and therefore the catalogs and analysis tools will be compatible with the LSST. We demonstrate the use and performance of our pipeline using three X-ray luminous and observation-time complete LoVoCCS clusters: A3911, A3921, and A85. A3911 and A3921 have not been well studied previously by weak lensing, and we obtain similar lensing analysis results more » for A85 to previous studies. (We mainly use A3911 to show our pipeline and give more examples in the Appendix.)

« less
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; « less
Award ID(s):
Publication Date:
Journal Name:
The Astrophysical Journal
Page Range or eLocation-ID:
Article No. 84
DOI PREFIX: 10.3847
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present a mock catalog of gravitationally-lensed quasars atzqso< 7.5 with simulated images for the Rubin Observatory Legacy Survey of Space and Time (LSST). We adopt recent measurements of quasar-luminosity functions to model the quasar population, and use the CosmoDC2 mock galaxy catalog to model the deflector galaxies, which successfully reproduces the observed galaxy-velocity dispersion functions up tozd∼ 1.5. The mock catalog is highly complete for lensed quasars with Einstein radiusθE> 0.″07 and quasar absolute magnitudeMi< − 20. We estimate that there are ∼103lensed quasars discoverable in current imaging surveys, and LSST will increase this number to ∼ 2.4 × 103. Most of the lensed quasars have image separation Δθ> 0.″5, which will at least be marginally resolved in LSST images with seeing of ∼0.″7. There will be ∼200 quadruply-lensed quasars discoverable in the LSST. The fraction of quad lenses among all discoverable lensed quasars is about ∼10%–15%, and this fraction decreases with survey depth. This mock catalog shows a large diversity in the observational features of lensed quasars, in terms of lensing separation and quasar-to-deflector flux ratio. We discuss possible strategies for a complete search of lensed quasars in the LSST era.

  2. Abstract

    Constraining the distribution of small-scale structure in our universe allows us to probe alternatives to the cold dark matter paradigm. Strong gravitational lensing offers a unique window into small dark matter halos (<1010M) because these halos impart a gravitational lensing signal even if they do not host luminous galaxies. We create large data sets of strong lensing images with realistic low-mass halos, Hubble Space Telescope (HST) observational effects, and galaxy light from HST’s COSMOS field. Using a simulation-based inference pipeline, we train a neural posterior estimator of the subhalo mass function (SHMF) and place constraints on populations of lenses generated using a separate set of galaxy sources. We find that by combining our network with a hierarchical inference framework, we can both reliably infer the SHMF across a variety of configurations and scale efficiently to populations with hundreds of lenses. By conducting precise inference on large and complex simulated data sets, our method lays a foundation for extracting dark matter constraints from the next generation of wide-field optical imaging surveys.

  3. Abstract

    We present observations of the extremely luminous but ambiguous nuclear transient (ANT) ASASSN-17jz, spanning roughly 1200 days of the object’s evolution. ASASSN-17jz was discovered by the All-Sky Automated Survey for Supernovae (ASAS-SN) in the galaxy SDSS J171955.84+414049.4 on UT 2017 July 27 at a redshift ofz= 0.1641. The transient peaked at an absoluteB-band magnitude ofMB,peak= −22.81, corresponding to a bolometric luminosity ofLbol,peak= 8.3 × 1044erg s−1, and exhibited late-time ultraviolet emission that was still ongoing in our latest observations. Integrating the full light curve gives a total emitted energy ofEtot= (1.36 ±0.08) × 1052erg, with (0.80 ± 0.02) × 1052erg of this emitted within 200 days of peak light. This late-time ultraviolet emission is accompanied by increasing X-ray emission that becomes softer as it brightens. ASASSN-17jz exhibited a large number of spectral emission lines most commonly seen in active galactic nuclei (AGNs) with little evidence of evolution. It also showed transient Balmer features, which became fainter and broader over time, and are still being detected >1000 days after peak brightness. We consider various physical scenarios for the origin of the transient, including supernovae (SNe), tidal disruption events, AGN outbursts, and ANTs. We find that the most likely explanation ismore »that ASASSN-17jz was a SN IIn occurring in or near the disk of an existing AGN, and that the late-time emission is caused by the AGN transitioning to a more active state.

    « less
  4. Abstract

    We present a multiwavelength analysis of the galaxy cluster SPT-CL J0607-4448 (SPT0607), which is one of the most distant clusters discovered by the South Pole Telescope atz= 1.4010 ± 0.0028. The high-redshift cluster shows clear signs of being relaxed with well-regulated feedback from the active galactic nucleus (AGN) in the brightest cluster galaxy (BCG). Using Chandra X-ray data, we construct thermodynamic profiles and determine the properties of the intracluster medium. The cool-core nature of the cluster is supported by a centrally peaked density profile and low central entropy (K0=189+11keV cm2), which we estimate assuming an isothermal temperature profile due to the limited spectral information given the distance to the cluster. Using the density profile and gas cooling time inferred from the X-ray data, we find a mass-cooling rateṀcool=10060+90Myr−1. From optical spectroscopy and photometry around the [Oii] emission line, we estimate that the BCG star formation rate isSFR[OII]=1.70.6+1.0Myr−1, roughly two orders of magnitude lower than the predicted mass-cooling rate. In addition, using ATCA radio data at 2.1 GHz, we measure a radio jet powerPcav=3.21.3+2.1×1044erg s−1, which is consistent withmore »the X-ray cooling luminosity (Lcool=1.90.5+0.2×1044erg s−1withinrcool= 43 kpc). These findings suggest that SPT0607 is a relaxed, cool-core cluster with AGN-regulated cooling at an epoch shortly after cluster formation, implying that the balance between cooling and feedback can be reached quickly. We discuss the implications for these findings on the evolution of AGN feedback in galaxy clusters.

    « less
  5. Abstract

    A key component of the Dark Energy Spectroscopic Instrument (DESI) survey validation (SV) is a detailed visual inspection (VI) of the optical spectroscopic data to quantify key survey metrics. In this paper we present results from VI of the quasar survey using deep coadded SV spectra. We show that the majority (≈70%) of the main-survey targets are spectroscopically confirmed as quasars, with ≈16% galaxies, ≈6% stars, and ≈8% low-quality spectra lacking reliable features. A nonnegligible fraction of the quasars are misidentified by the standard spectroscopic pipeline, but we show that the majority can be recovered using post-pipeline “afterburner” quasar-identification approaches. We combine these “afterburners” with our standard pipeline to create a modified pipeline to increase the overall quasar yield. At the depth of the main DESI survey, both pipelines achieve a good-redshift purity (reliable redshifts measured within 3000 km s−1) of ≈99%; however, the modified pipeline recovers ≈94% of the visually inspected quasars, as compared to ≈86% from the standard pipeline. We demonstrate that both pipelines achieve a median redshift precision and accuracy of ≈100 km s−1and ≈70 km s−1, respectively. We constructed composite spectra to investigate why some quasars are missed by the standard pipeline and find thatmore »they are more host-galaxy dominated (i.e., distant analogs of “Seyfert galaxies”) and/or more dust reddened than the standard-pipeline quasars. We also show example spectra to demonstrate the overall diversity of the DESI quasar sample and provide strong-lensing candidates where two targets contribute to a single spectrum.

    « less