skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The cosmic web of X-ray active galactic nuclei seen through the eROSITA Final Equatorial Depth Survey (eFEDS)
Which galaxies in the general population turn into active galactic nuclei (AGNs) is a keystone of galaxy formation and evolution. Thanks to SRG/eROSITA’s contiguous 140 square degree pilot survey field, we constructed a large, complete, and unbiased soft X-ray flux-limited ( F X  > 6.5 × 10 −15 erg s −1 cm −2 ) AGN sample at low redshift, 0.05 <  z  < 0.55. Two summary statistics, the clustering using spectra from SDSS-V and galaxy-galaxy lensing with imaging from HSC, are measured and interpreted with halo occupation distribution and abundance matching models. Both models successfully account for the observations. We obtain an exceptionally complete view of the AGN halo occupation distribution. The population of AGNs is broadly distributed among halos with a mean mass of 3.9 −2.4 +2.0  × 10 12   M ⊙ . This corresponds to a large-scale halo bias of b ( z  = 0.34) = 0.99 −0.10 +0.08 . The central occupation has a large transition parameter, σ log 10 ( M )  = 1.28 ± 0.2. The satellite occupation distribution is characterized by a shallow slope, α sat  = 0.73 ± 0.38. We find that AGNs in satellites are rare, with f sat  < 20%. Most soft X-ray-selected AGNs are hosted by central galaxies in their dark matter halo. A weak correlation between soft X-ray luminosity and large-scale halo bias is confirmed (3.3 σ ). We discuss the implications of environmental-dependent AGN triggering. This study paves the way toward fully charting, in the coming decade, the coevolution of X-ray AGNs, their host galaxies, and dark matter halos by combining eROSITA with SDSS-V, 4MOST, DESI, LSST, and Euclid data.  more » « less
Award ID(s):
2106990
PAR ID:
10431280
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
673
ISSN:
0004-6361
Page Range / eLocation ID:
A122
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract To facilitate new studies of galaxy-merger-driven fueling of active galactic nuclei (AGNs), we present a catalog of 387 AGNs that we have identified in the final population of over 10,000z< 0.15 galaxies observed by the Sloan Digital Sky Survey-IV (SDSS-IV) integral field spectroscopy survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA). We selected the AGNs via mid-infrared Wide-field Infrared Survey Explorer colors, Swift/Burst Alert Telescope ultra-hard X-ray detections, NRAO Very Large Array Sky Survey and Faint Images of the Radio Sky at Twenty centimeters radio observations, and broad emission lines in SDSS spectra. By combining the MaNGA AGN catalog with a new SDSS catalog of galaxy mergers that were identified based on a suite of hydrodynamical simulations of merging galaxies, we study the link between galaxy mergers and nuclear activity for AGNs above a limiting bolometric luminosity of 1044.4erg s−1. We find an excess of AGNs in mergers, relative to nonmergers, for galaxies with stellar mass ∼1011M, where the AGN excess is somewhat stronger in major mergers than in minor mergers. Further, when we combine minor and major mergers and sort by merger stage, we find that the highest AGN excess occurs in post-coalescence mergers in the highest-mass galaxies. However, we find no evidence of a correlation between galaxy mergers and AGN luminosity or accretion rate. In summary, while galaxy mergers overall do appear to trigger or enhance AGN activity more than nonmergers, they do not seem to induce higher levels of accretion or higher luminosities. We provide the MaNGA AGN Catalog and the MaNGA Galaxy Merger Catalog for the community here. 
    more » « less
  2. Abstract This paper represents an effort to provide robust constraints on the galaxy–halo connection and simultaneously test the Planck ΛCDM cosmology using a fully numerical model of small-scale galaxy clustering. We explore two extensions to the standard Halo Occupation Distribution model: assembly bias, whereby halo occupation depends on both halo mass and the larger environment, and velocity bias, whereby galaxy velocities do not perfectly trace the velocity of the dark matter within the halo. Moreover, we incorporate halo mass corrections to account for the impact of baryonic physics on the halo population. We identify an optimal set of clustering measurements to constrain this “decorated” HOD model for both low- and high-luminosity galaxies in SDSS DR7. We find that, for low-luminosity galaxies, a model with both assembly bias and velocity bias provides the best fit to the clustering measurements, with no tension remaining in the fit. In this model, we find evidence for both central and satellite galaxy assembly bias at the 99% and 95% confidence levels, respectively. In addition, we find evidence for satellite galaxy velocity bias at the 99.9% confidence level. For high-luminosity galaxies, we find no evidence for either assembly bias or velocity bias, but our model exhibits significant tension with SDSS measurements. We find that all of these conclusions still stand when we include the effects of baryonic physics on the halo mass function, suggesting that the tension we find for high-luminosity galaxies may be due to a problem with our assumed cosmological model. 
    more » « less
  3. null (Ed.)
    ABSTRACT We report the identification of a low-mass active galactic nucleus (AGN), DES J0218−0430, in a redshift z = 0.823 galaxy in the Dark Energy Survey (DES) Supernova field. We select DES J0218−0430 as an AGN candidate by characterizing its long-term optical variability alone based on DES optical broad-band light curves spanning over 6 yr. An archival optical spectrum from the fourth phase of the Sloan Digital Sky Survey shows both broad Mg ii and broad H β lines, confirming its nature as a broad-line AGN. Archival XMM–Newton X-ray observations suggest an intrinsic hard X-ray luminosity of $$L_{{\rm 2-12\, keV}}\approx 7.6\pm 0.4\times 10^{43}$$ erg s−1, which exceeds those of the most X-ray luminous starburst galaxies, in support of an AGN driving the optical variability. Based on the broad H β from SDSS spectrum, we estimate a virial black hole (BH) mass of M• ≈ 106.43–106.72 M⊙ (with the error denoting the systematic uncertainty from different calibrations), consistent with the estimation from OzDES, making it the lowest mass AGN with redshift > 0.4 detected in optical. We estimate the host galaxy stellar mass to be M* ≈ 1010.5 ± 0.3 M⊙ based on modelling the multiwavelength spectral energy distribution. DES J0218−0430 extends the M•–M* relation observed in luminous AGNs at z ∼ 1 to masses lower than being probed by previous work. Our work demonstrates the feasibility of using optical variability to identify low-mass AGNs at higher redshift in deeper synoptic surveys with direct implications for the upcoming Legacy Survey of Space and Time at Vera C. Rubin Observatory. 
    more » « less
  4. Abstract We present cosmological-scale three-dimensional neutral hydrogen (Hi) tomographic maps atz= 2–3 over a total of 837 deg2in two blank fields that are developed with Lyαforest absorptions of 14,736 background Sloan Digital Sky Survey (SDSS) quasars atz= 2.08–3.67. Using the tomographic maps, we investigate the large-scale (≳10h−1cMpc) average Hiradial profiles and two-direction profiles of the line-of-sight (LOS) and transverse directions around galaxies and active galactic nuclei (AGNs) atz= 2–3 identified by the Hobby–Eberly Telescope Dark Energy eXperiment survey and SDSS, respectively. The peak of the Hiradial profile around galaxies is lower than the one around AGNs, suggesting that the dark matter halos of galaxies are less massive on average than those of AGNs. The LOS profile of AGNs is narrower than the transverse profile, indicating the Kaiser effect. There exist weak absorption outskirts at ≳30h−1cMpc beyond Histructures of galaxies and AGNs found in the LOS profiles that can be explained by the Higas at ≳30h−1cMpc falling toward the source position. Our findings indicate that the Hiradial profile of AGNs has transitions from proximity zones (≲a fewh−1cMpc) to the Histructures (∼1–30h−1cMpc) and the weak absorption outskirts (≳30h−1cMpc). Although there is no significant dependence of AGN types (type 1 vs. type 2) on the Hiprofiles, the peaks of the radial profiles anticorrelate with AGN luminosities, suggesting that AGNs’ ionization effects are stronger than the gas mass differences. 
    more » « less
  5. Abstract The large-scale universal structure comprises strands of dark matter and galaxies with large underdense volumes known as voids. We measure the fraction of the line of sight that intersects voids for active galactic nuclei (AGN) detected by Fermi Large Area Telescope (LAT) and quasars from the Sloan Digital Sky Survey (SDSS). This “voidiness” fraction is a rudimentary proxy for the density along the line of sight to the galaxies. The voidiness of SDSS-observed quasars (QSOs) is distinctly different from randomly distributed source populations, with a medianp-value of 4.6 × 10−5and ≪1 × 10−7, when compared with 500 simulated populations with randomly simulated locations but matching redshifts in the 0.1 ≤z< 0.4 and 0.4 ≤z< 0.7 intervals, respectively. A similar comparison of the voidiness for LAT-detected AGN shows medianp-values greater than 0.05 in each redshift interval. When comparing the SDSS QSO population to the LAT-detected AGN, we mitigate potential bias from a relationship between redshift and voidiness by comparing the LAT-detected AGN to a “redshift-matched” set of SDSS QSOs. The LAT-detected AGN between a redshift of 0.4 and 0.7 show higher voidiness compared to the redshift-matched SDSS QSO populations, with a medianp-value of 2.3 × 10−5(a 4.1σdeviation). No deviation is found when comparing the same populations between redshifts of 0.1 and 0.4 (p> 0.05). We do not study possible causes of this voidiness difference. It might relate to propagation effects from lower magnetic or radiative background fields within voids or to an environment more favorable for gamma-ray production for AGN near voids. 
    more » « less