The gyroid lattice is prepared in chiral and non‐chiral forms. The chiral gyroid lattice is observed to exhibit temperature‐induced twist with the direction of twist corresponding to the sense of chirality. This effect is a nonclassical effect that cannot occur in classical elasticity or classical thermo‐elasticity but is allowable in Cosserat solids. Poisson's ratio of the gyroid is known to be about 0.3 with minimal dependence on size. In contrast to squeeze–twist coupling in which substantial size effects occur with slender specimens twisting much more than thicker ones, thermal–twist coupling exhibits opposite and less consistent size effects of much smaller magnitude.
more »
« less
Extended Poisson's Ratio Range in Chiral Isotropic Elastic Materials
Poisson's ratio in chiral Cosserat elastic solids is considered. Chirality allows the Poisson's ratio to exceed classical bounds, even if the material is directionally isotropic and all elastic moduli are within thermodynamic limits based on strain energy density. Poisson's ratio in chiral rods depends on the chiral elastic constants as well as on the shear and bulk moduli, assumed positive. Poisson's ratio can be greater than 0.5 or smaller than −1 for slender chiral specimens.
more »
« less
- Award ID(s):
- 1906890
- PAR ID:
- 10370645
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- physica status solidi (b)
- Volume:
- 259
- Issue:
- 12
- ISSN:
- 0370-1972
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The field strength (FS) effect of six different network modifiers on the elastoplastic properties of aluminoborosilicate glasses was explored using a volumetric recovery study. This work, in conjunction with Part I, explored the intersection of hardness, crack resistance, and other physical properties with glass elasticity. Results showed that (1) the elastic volume fraction decreased with FS for both the alkali and alkaline earth (AE) glasses; (2) the Poisson's ratio did not trend with pile‐up or shear flow volume fraction; (3) the elastic‐to‐plastic deformation ratio increased with applied load and decreased with modifier FS for both the alkali and AE glasses; and (4) an increase in plasticity correlated with increased hardness, crack resistance, and elastic moduli.more » « less
-
MAX phase foams could have various applications where tailored functional and mechanical properties are required. In this study, Ti2AlC and Ti3SiC2 MAX phase foams with controlled porosity and pore size were produced and characterized. The foams were produced from MAX phase powders by powder metallurgy method using crystalline carbohydrate as a space holder. Foams with overall porosity up to approximately 71 vol% and pore size from 250 μm to 1000 μm were successfully produced; micro-porosity and macro-porosity was characterized. Poisson's ratio and elastic moduli of the foams were measured by resonant ultrasound spectroscopy (RUS) and analyzed as a function of porosity and pore size. Different models were used to fit the experimental data and interpret the effect of pore size and amount of porosity and on elastic properties. It was found that the amount and type of porosity has a larger influence on the elastic properties than the pore size.more » « less
-
Abstract The modifier field strength (FS) is believed to play an important role in determining the elastic–plastic responses of aluminoborosilicate (ABS) glasses, but its effect is not well understood. Three novel alkali and three alkaline earth (AE) ABS compositions were created for this study which is the first part of two studies that explored the elastoplastic responses of these glasses. Six compositions were designed using different network modifiers (NWMs) to cover a range of cation FS. The glasses were also designed such that the concentrations of NWM and Al2O3were similar, which maximized the three‐coordinated boron fraction in the network. It is well known that modifier FS can affect the coordination number (CN) of Al and B in an ABS glass structure, for example, a higher FS modifier can promote B3 → B4and higher [Al5,6], but the degree of this depends on network former (NWF) ratios. Previous work used solid‐state NMR spectroscopic analysis on the current glasses to find that there was variation between [B4] and [Al4] between the two glass series (alkali vs. AE) but that was attributed to synthesis factors and no trend with FS was associated with the varying NWF CN. Further,29Si ssNMR showed no evidence of NBOs which made sense based on composition. The conclusion, therefore, was that there was a far greater correlation with modifier FS for the increased mechanical and physical properties rather than the CN of Al and B. Part I of the current work focused on the elastic moduli, Poisson's ratio, the indentation size effect (ISE), and the bow‐in parameter. This part laid out the foundation to investigate the intersection of these elastoplastic properties with hardness and crack resistance as a function of NWM FS. Results showed that: (i) the Young's, bulk, and shear moduli increased with modifier FS, whereas Poisson's ratio did not trend with FS; (ii) the alkali glasses had a significantly higher magnitudes of ISE compared to the AE glasses; and (iii) the bow‐in parameter was load dependent and decreased with modifier FS at the highest indentation load.more » « less
-
Abstract Auxetic materials are the materials that can display negative Poisson's ratio that describes the degree to which a material contracts (or expands) transversally when axially strained. Human stem cells sense the mechanical properties of the microenvironment, including material surface properties, stiffness, and Poisson's ratio. In this study, six different auxetic polyurethane (PU) foams with different elastic modulus (0.7–1.8 kPa) and Poisson's ratio (−0.1 to −0.5) are used to investigate lineage specification of human induced pluripotent stem cells (hiPSCs). The surfaces of the foams are modified with chitosan or heparin to enhance the adhesion and proliferation of hiPSCs. Then, the vascular and neural differentiation of hiPSCs are investigated on different foams with distinct elastic modulus and Poisson's ratio. With different auxetic foams, cells show differential adherent density and differentiation capacity. Chitosan and heparin surface functionalization promote the hindbrain and hippocampal markers, but not forebrain markers during neural patterning of hiPSCs. Properly surface engineered auxetic scaffolds can also promote vascular differentiation of hiPSCs. This study represents a versatile and multifunctional scaffold fabrication approach and can lead to a suitable system for establishing hiPSC culture models in applications of neurovascular disease modeling and drug screening.more » « less
An official website of the United States government
