skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Projected changes in wind assistance under climate change for nocturnally migrating bird populations
Abstract Current climate models and observations indicate that atmospheric circulation is being affected by global climate change. To assess how these changes may affect nocturnally migrating bird populations, we need to determine how current patterns of wind assistance at migration altitudes will be enhanced or reduced under future atmospheric conditions. Here, we use information compiled from 143 weather surveillance radars stations within the contiguous United States to estimate the daily altitude, density, and direction of nocturnal migration during the spring and autumn. We intersected this information with wind projections to estimate how wind assistance is expected to change during this century at current migration altitudes. The prevailing westerlies at midlatitudes are projected to increase in strength during spring migration and decrease in strength to a lesser degree during autumn migration. Southerly winds will increase in strength across the continent during both spring and autumn migration, with the strongest gains occurring in the center of the continent. Wind assistance is projected to increase across the central (0.44 m/s; 10.1%) and eastern portions of the continent (0.32 m/s; 9.6%) during spring migration, and wind assistance is projected to decrease within the central (0.32 m/s; 19.3%) and eastern portions of the continent (0.17 m/s; 6.6%) during autumn migration. Thus, across a broad portion of the continent where migration intensity is greatest, the efficiency of nocturnal migration is projected to increase in the spring and decrease in the autumn, potentially affecting time and energy expenditures for many migratory bird species. These findings highlight the importance of placing climate change projections within a relevant ecological context informed through empirical observations, and the need to consider the possibility that climate change may generate both positive and negative implications for natural systems.  more » « less
Award ID(s):
1661329 1661259
PAR ID:
10370668
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
25
Issue:
2
ISSN:
1354-1013
Page Range / eLocation ID:
p. 589-601
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Climate change is drastically changing the timing of biological events across the globe. Changes in the phenology of seasonal migrations between the breeding and wintering grounds have been observed across biological taxa, including birds, mammals, and insects. For birds, strong links have been shown between changes in migration phenology and changes in weather conditions at the wintering, stopover, and breeding areas. For other animal taxa, the current understanding of, and evidence for, climate (change) influences on migration still remains rather limited, mainly due to the lack of long‐term phenology datasets. Bracken Cave in Texas (USA) holds one of the largest bat colonies of the world. Using weather radar data, a unique 23‐year (1995–2017) long time series was recently produced of the spring and autumn migration phenology of Brazilian free‐tailed bats (Tadarida brasiliensis) at Bracken Cave. Here, we analyse these migration phenology time series in combination with gridded temperature, precipitation, and wind data across Mexico and southern USA, to identify the climatic drivers of (changes in) bat migration phenology. Perhaps surprisingly, our extensive spatiotemporal search did not find temperature to influence either spring or autumn migration. Instead, spring migration phenology seems to be predominantly driven by wind conditions at likely wintering or spring stopover areas during the migration period. Autumn migration phenology, on the other hand, seems to be dominated by precipitation to the east and north‐east of Bracken Cave. Long‐term changes towards more frequent migration and favourable wind conditions have, furthermore, allowed spring migration to occur 16 days earlier. Our results illustrate how some of the remaining knowledge gaps on the influence of climate (change) on bat migration and abundance can be addressed using weather radar analyses. 
    more » « less
  2. Surface winds over California can compound fire risk during autumn, yet their long-term trends in the face of decadal warming are less clear compared to other climate variables like temperature, drought, and snowmelt. To determine where and how surface winds are changing most, this article uses multiple reanalyses and Remote Automated Weather Stations (RAWS) to calculate autumn 10 m wind speed trends during 1979–2020. Reanalysis trends show statistically significant increases in autumn night-time easterlies on the western slopes of the Sierra Nevada. Although downslope windstorms are frequent to this region, trends instead appear to result from elevated gradients in warming between California and the interior continent. The result is a sharper horizontal temperature gradient over the Sierra crest and adjacent free atmosphere above the foothills, strengthening the climatological nocturnal katabatic wind. While RAWS records show broad agreement, their trend is likely influenced by year-to-year changes in the number of observations. 
    more » « less
  3. Millions of nocturnally migrating birds die each year from collisions with built structures, especially brightly illuminated buildings and communication towers. Reducing this source of mortality requires knowledge of important behavioral, meteorological, and anthropogenic factors, yet we lack an understanding of the interacting roles of migration, artificial lighting, and weather conditions in causing fatal bird collisions. Using two decades of collision surveys and concurrent weather and migration measures, we model numbers of collisions occurring at a large urban building in Chicago. We find that the magnitude of nocturnal bird migration, building light output, and wind conditions are the most important predictors of fatal collisions. The greatest mortality occurred when the building was brightly lit during large nocturnal migration events and when winds concentrated birds along the Chicago lakeshore. We estimate that halving lighted window area decreases collision counts by 11× in spring and 6× in fall. Bird mortality could be reduced by ∼60% at this site by decreasing lighted window area to minimum levels historically recorded. Our study provides strong support for a relationship between nocturnal migration magnitude and urban bird mortality, mediated by light pollution and local atmospheric conditions. Although our research focuses on a single site, our findings have global implications for reducing or eliminating a critically important cause of bird mortality. 
    more » « less
  4. Applications of remote sensing data to monitor bird migration usher a new understanding of magnitude and extent of movements across entire flyways. Millions of birds move through the western USA, yet this region is understudied as a migratory corridor. Characterizing movements in the Pacific Flyway offers a unique opportunity to study complementary patterns to those recently highlighted in the Atlantic and Central Flyways. We use weather surveillance radar data from spring and autumn (1995–2018) to examine migrants' behaviours in relation to winds in the Pacific Flyway. Overall, spring migrants tended to drift on winds, but less so at northern latitudes and farther inland from the Pacific coastline. Relationships between winds and autumn flight behaviours were less striking, with no latitudinal or coastal dependencies. Differences in the preferred direction of movement (PDM) and wind direction predicted drift patterns during spring and autumn, with increased drift when wind direction and PDM differences were high. We also observed greater total flight activity through the Pacific Flyway during the spring when compared with the autumn. Such complex relationships among birds’ flight strategies, winds and seasonality highlight the variation within a migration system. Characterizations at these scales complement our understanding of strategies to clarify aerial animal movements. 
    more » « less
  5. Billions of animals cross the globe each year during seasonal migrations, but efforts to monitor them are hampered by the unpredictability of their movements. We developed a bird migration forecast system at a continental scale by leveraging 23 years of spring observations to identify associations between atmospheric conditions and bird migration intensity. Our models explained up to 81% of variation in migration intensity across the United States at altitudes of 0 to 3000 meters, and performance remained high in forecasting events 1 to 7 days in advance (62 to 76% of variation was explained). Avian migratory movements across the United States likely exceed 500 million individuals per night during peak passage. Bird migration forecasts will reduce collisions with buildings, airplanes, and wind turbines; inform a variety of monitoring efforts; and engage the public. 
    more » « less