skip to main content

Search for: All records

Award ID contains: 1661329

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The dynamic weather conditions that migrating birds experience during flight likely influence where they stop to rest and refuel, particularly after navigating inhospitable terrain or large water bodies, but effects of weather on stopover patterns remain poorly studied. We examined the influence of broad-scale weather conditions encountered by nocturnally migrating Nearctic-Neotropical birds during northward flight over the Gulf of Mexico (GOM) on subsequent coastal stopover distributions. We categorized nightly weather patterns using historic maps and quantified region-wide densities of birds in stopover habitat with data collected by 10 weather surveillance radars from 2008 to 2015. We found spring weather patterns over the GOM were most often favorable for migrating birds, with winds assisting northward flight, and document regional stopover patterns in response to specific unfavorable weather conditions. For example, Midwest Continental High is characterized by strong northerly winds over the western GOM, resulting in high-density concentrations of migrants along the immediate coastlines of Texas and Louisiana. We show, for the first time, that broad-scale weather experienced during flight influences when and where birds stop to rest and refuel. Linking synoptic weather patterns encountered during flight with stopover distributions contributes to the emerging macro-ecological understanding of bird migration, which is criticalmore »to consider in systems undergoing rapid human-induced changes.« less
  2. Weather radars provide detailed information on aerial movements of organisms. However, interpreting fine-scale radar imagery remains challenging because of changes in aerial sampling altitude with distance from the radar. Fine-scale radar imagery has primarily been used to assess mass exodus at sunset to study stopover habitat associations. Here, we present a method that enables a more intuitive integration of information across elevation scans projected in a two-dimensional spatial image of fine-scale radar reflectivity. We applied this method on nights of intense bird migration to demonstrate how the spatial distribution of migrants can be explored at finer spatial scales and across multiple radars during the higher flying en-route phase of migration. The resulting reflectivity maps enable explorative analysis of factors influencing their regional and fine-scale distribution. We illustrate the method’s application by generating time-series of composites of up to 20 radars, achieving a nearly complete spatial coverage of a large part of Northwest Europe. These visualizations are highly useful in interpreting regional-scale migration patterns and provide detailed information on bird movements in the landscape and aerial environment.
  3. Species extinctions have defined the global biodiversity crisis, but extinction begins with loss in abundance of individuals that can result in compositional and functional changes of ecosystems. Using multiple and independent monitoring networks, we report population losses across much of the North American avifauna over 48 years, including once-common species and from most biomes. Integration of range-wide population trajectories and size estimates indicates a net loss approaching 3 billion birds, or 29% of 1970 abundance. A continent-wide weather radar network also reveals a similarly steep decline in biomass passage of migrating birds over a recent 10-year period. This loss of bird abundance signals an urgent need to address threats to avert future avifaunal collapse and associated loss of ecosystem integrity, function, and services.
  4. Applications of remote sensing data to monitor bird migration usher a new understanding of magnitude and extent of movements across entire flyways. Millions of birds move through the western USA, yet this region is understudied as a migratory corridor. Characterizing movements in the Pacific Flyway offers a unique opportunity to study complementary patterns to those recently highlighted in the Atlantic and Central Flyways. We use weather surveillance radar data from spring and autumn (1995–2018) to examine migrants' behaviours in relation to winds in the Pacific Flyway. Overall, spring migrants tended to drift on winds, but less so at northern latitudes and farther inland from the Pacific coastline. Relationships between winds and autumn flight behaviours were less striking, with no latitudinal or coastal dependencies. Differences in the preferred direction of movement (PDM) and wind direction predicted drift patterns during spring and autumn, with increased drift when wind direction and PDM differences were high. We also observed greater total flight activity through the Pacific Flyway during the spring when compared with the autumn. Such complex relationships among birds’ flight strategies, winds and seasonality highlight the variation within a migration system. Characterizations at these scales complement our understanding of strategies to clarify aerialmore »animal movements.« less