skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The specificity of Burkholderia symbionts in the social amoeba farming symbiosis: Prevalence, species, genetic and phenotypic diversity
Abstract The establishment of symbioses between eukaryotic hosts and bacterial symbionts in nature is a dynamic process. The formation of such relationships depends on the life history of both partners. Bacterial symbionts of amoebae may have unique evolutionary trajectories to the symbiont lifestyle, because bacteria are typically ingested as prey. To persist after ingestion, bacteria must first survive phagocytosis. In the social amoebaDictyostelium discoideum, certain strains ofBurkholderiabacteria are able to resist amoebal digestion and maintain a persistent relationship that includes carriage throughout the amoeba's social cycle that culminates in spore formation. SomeBurkholderiastrains allow their host to carry other bacteria, as food. This carried food is released in new environments in a trait called farming. To better understand the diversity and prevalence ofBurkholderiasymbionts and the traits they impart to their amoebae hosts, we first screened 700 natural isolates ofD. discoideumand found 25% infected withBurkholderia. We next used a multilocus phylogenetic analysis and identified two independent transitions byBurkholderiato the symbiotic lifestyle. Finally, we tested the ability of 38 strains ofBurkholderiafromD. discoideum, as well as strains isolated from other sources, for traits relevant to symbiosis inD. discoideum. OnlyD. discoideumnative isolates belonging to theBurkholderia agricolaris,B. hayleyella, andB. bonnieaspecies were able to form persistent symbiotic associations withD. discoideum.TheBurkholderia–Dictyosteliumrelationship provides a promising arena for further studies of the pathway to symbiosis in a unique system.  more » « less
Award ID(s):
1656756 1753743
PAR ID:
10370764
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Ecology
Volume:
28
Issue:
4
ISSN:
0962-1083
Page Range / eLocation ID:
p. 847-862
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The evolution of symbiotic interactions may be affected by unpredictable conditions. However, a link between prevalence of these conditions and symbiosis has not been widely demonstrated. We test for these associations usingDictyostelium discoideumsocial amoebae and their bacterial endosymbionts.D. discoideumcommonly hosts endosymbiotic bacteria from three taxa:Paraburkholderia, Amoebophilusand Chlamydiae. Three species of facultativeParaburkholderiaendosymbionts are the best studied and give hosts the ability to carry prey bacteria through the dispersal stage to new environments.Amoebophilusand Chlamydiae are obligate endosymbiont lineages with no measurable impact on host fitness. We tested whether the frequency of both single infections and coinfections of these symbionts were associated with the unpredictability of their soil environments by using symbiont presence-absence data fromD. discoideumisolates from 21 locations across the eastern United States. We found that symbiosis across all infection types, symbiosis withAmoebophilusand Chlamydiae obligate endosymbionts, and symbiosis involving coinfections were not associated with any of our measures. However, unpredictable precipitation was associated with symbiosis in two species ofParaburkholderia, suggesting a link between unpredictable conditions and symbiosis. 
    more » « less
  2. A key question in cooperation is how to find the right partners and maintain cooperative relationships. This is especially challenging for horizontally transferred bacterial symbionts where relationships must be repeatedly established anew. In the social amoeba Dictyostelium discoideum farming symbiosis, two species of inedible Burkholderia bacteria (Burkholderia agricolaris and Burkholderia hayleyella) initiate stable associations with naive D. discoideum hosts and cause carriage of additional bacterial species. However, it is not clear how the association between D. discoideum and its carried Burkholderia is formed and maintained. Here, we look at precisely how Burkholderia finds its hosts. We found that both species of Burkholderia clones isolated from D. discoideum, but not other tested Burkholderia species, are attracted to D. discoideum supernatant, showing that the association is not simply the result of haphazard engulfment by the amoebas. The chemotactic responses are affected by both partners. We find evidence that B. hayleyella prefers D. discoideum clones that currently or previously carried Burkholderia, while B. agricolaris does not show this preference. However, we find no evidence of Burkholderia preference for their own host clone or for other hosts of their own species. We further investigate the chemical differences of D. discoideum supernatants that might explain the patterns shown above using a mass spectrometry based metabolomics approach. These results show that these bacterial symbionts are able to preferentially find and to some extent choose their unicellular partners. In addition, this study also suggests that bacteria can actively search for and target phagocytic cells, which may help us better understand how bacteria interact with immune systems. 
    more » « less
  3. Here we give names to three new species of Paraburkholderia that can remain in symbiosis indefinitely in the spores of a soil dwelling eukaryote, Dictyostelium discoideum . The new species P. agricolaris sp. nov. , P. hayleyella sp. nov. , and P. bonniea sp. nov . are widespread across the eastern USA and were isolated as internal symbionts of wild-collected D. discoideum . We describe these sp. nov. using several approaches. Evidence that they are each a distinct new species comes from their phylogenetic position, average nucleotide identity, genome-genome distance, carbon usage, reduced length, cooler optimal growth temperature, metabolic tests, and their previously described ability to invade D. discoideum amoebae and form a symbiotic relationship . All three of these new species facilitate the prolonged carriage of food bacteria by D. discoideum, though they themselves are not food. Further studies of the interactions of these three new species with D. discoideum should be fruitful for understanding the ecology and evolution of symbioses. 
    more » « less
  4. Symbiotic interactions may change depending on third parties like predators or prey. Third-party interactions with prey bacteria are central to the symbiosis betweenDictyostelium discoideumsocial amoeba hosts andParaburkholderiabacterial symbionts. Symbiosis with inedibleParaburkholderiaallows hostD. discoideumto carry prey bacteria through the dispersal stage where hosts aggregate and develop into fruiting bodies that disperse spores. Carrying prey bacteria benefits hosts when prey are scarce but harms hosts when prey bacteria are plentiful, possibly because hosts leave some prey bacteria behind while carrying. Thus, understanding benefits and costs in this symbiosis requires measuring how many prey bacteria are eaten, carried and left behind by infected hosts. We found thatParaburkholderiainfection makes hosts leave behind both symbionts and prey bacteria. However, the number of prey bacteria left uneaten was too small to explain why infected hosts produced fewer spores than uninfected hosts. Turning to carried bacteria, we found that hosts carry prey bacteria more often after developing in prey-poor environments than in prey-rich ones. This suggests that carriage is actively modified to ensure hosts have prey in the harshest conditions. Our results show that multi-faceted interactions with third parties shape the evolution of symbioses in complex ways. 
    more » « less
  5. Abstract Symbiotic interactions change with environmental context. Measuring these context-dependent effects in hosts and symbionts is critical to determining the nature of symbiotic interactions. We investigated context dependence in the symbiosis between social amoeba hosts and their inedible Paraburkholderia bacterial symbionts, where the context is the abundance of host food bacteria. Paraburkholderia have been shown to harm hosts dispersed to food-rich environments, but aid hosts dispersed to food-poor environments by allowing hosts to carry food bacteria. Through measuring symbiont density and host spore production, we show that this food context matters in three other ways. First, it matters for symbionts, who suffer a greater cost from competition with food bacteria in the food-rich context. Second, it matters for host-symbiont conflict, changing how symbiont density negatively impacts host spore production. Third, data-based simulations show that symbiosis often provides a long-term fitness advantage for hosts after rounds of growth and dispersal in variable food contexts, especially when conditions are harsh with little food. These results show how food context can have many consequences for the Dictyostelium-Paraburkholderia symbiosis and that both sides can frequently benefit. 
    more » « less