skip to main content


Title: Highly Chemoselective Transamidation of Unactivated Tertiary Amides by Electrophilic N−C(O) Activation by Amide‐to‐Acyl Iodide Re‐routing
Abstract

The challenging transamidation of unactivated tertiary amides has been accomplished via cooperative acid/iodide catalysis. Most crucially, the method provides a novel manifold to re‐route the reactivity of unactivated N,N‐dialkyl amides through reactive acyl iodide intermediates, thus reverting the classical order of reactivity of carboxylic acid derivatives. This method provides a direct route to amide‐to‐amide bond interconversion with excellent chemoselectivity using equivalent amounts of amines. The combination of acid and iodide has been identified as the essential factor to activate the amide C−N bond through electrophilic catalytic activation, enabling the production of new desired transamidated products with wide substrate scope of both unactivated amides and amines, including late‐stage functionalization of complex APIs (>80 examples). We anticipate that this powerful activation mode of unactivated amide bonds will find broad‐ranging applications in chemical synthesis.

 
more » « less
Award ID(s):
1650766
NSF-PAR ID:
10370781
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
61
Issue:
24
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The challenging transamidation of unactivated tertiary amides has been accomplished via cooperative acid/iodide catalysis. Most crucially, the method provides a novel manifold to re‐route the reactivity of unactivated N,N‐dialkyl amides through reactive acyl iodide intermediates, thus reverting the classical order of reactivity of carboxylic acid derivatives. This method provides a direct route to amide‐to‐amide bond interconversion with excellent chemoselectivity using equivalent amounts of amines. The combination of acid and iodide has been identified as the essential factor to activate the amide C−N bond through electrophilic catalytic activation, enabling the production of new desired transamidated products with wide substrate scope of both unactivated amides and amines, including late‐stage functionalization of complex APIs (>80 examples). We anticipate that this powerful activation mode of unactivated amide bonds will find broad‐ranging applications in chemical synthesis.

     
    more » « less
  2. The Suzuki-Miyaura cross-coupling has been widely recognized as one of the most important methods for the construction of C–C bonds. However, in contrast to traditional aryl halide or pseudohalide electrophiles, coupling reactions with unactivated C–N and C–O electrophiles have proven significantly more challenging. Here we report the first general palladium-catalyzed Suzuki-Miyaura cross-coupling of both common amides and aryl esters through the selective cleavage of the C–N and C–O bonds under exceedingly mild conditions. Notably, for the first time we demonstrate selective C(acyl)– N and C(acyl)–O cleavage/cross-coupling under the same reaction conditions. The reaction uses a commercially available, bench-stable and operationally-convenient (n3-1-t-Bu-indenyl)Pd(IPr)(Cl) precatalyst. Furthermore, we demonstrate that the reactivity of generic amides and aryl esters can be correlated with barriers to isomerization around the C(acyl)–X (X = N, O) bond, thus providing a blueprint for the development of a broad range of novel coupling reactions of ester and amide electrophiles by the selective activation of C–O and C–N bonds. 
    more » « less
  3. null (Ed.)
    The formation of amide bonds represents one of the most fundamental processes in organic synthesis. Transition-metal-catalyzed activation of acyclic twisted amides has emerged as an increasingly powerful platform in synthesis. Herein, we report the transamidation of N-activated twisted amides by selective N–C(O) cleavage mediated by air- and moisture-stable half-sandwich Ni(II)–NHC (NHC = N-heterocyclic carbenes) complexes. We demonstrate that the readily available cyclopentadienyl complex, [CpNi(IPr)Cl] (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene), promotes highly selective transamidation of the N–C(O) bond in twisted N-Boc amides with non-nucleophilic anilines. The reaction provides access to secondary anilides via the non-conventional amide bond-forming pathway. Furthermore, the amidation of activated phenolic and unactivated methyl esters mediated by [CpNi(IPr)Cl] is reported. This study sets the stage for the broad utilization of well-defined, air- and moisture-stable Ni(II)–NHC complexes in catalytic amide bond-forming protocols by unconventional C(acyl)–N and C(acyl)–O bond cleavage reactions. 
    more » « less
  4. The development of new transamidation reactions for the synthesis of amides is an important and active area of research due to the central role of amide linkage in various fields of chemistry. Herein, we report a new method for transamidation of N-acyl-glutarimides with amines under mild, metal-free conditions that relies on amide bond twist to weaken amidic resonance. A wide range of amines and functional groups, including electrophilic substituents that would be problematic in metal-catalyzed protocols, are tolerated under the reaction conditions. Mechanistic experiments implicate the amide bond twist, thermodynamic stability of the tetrahedral intermediate and leaving group ability of glutarimide as factors controlling the reactivity of this process. The method further establishes the synthetic utility of N-acyl-glutarimides as bench-stable, twist-perpendicular, amide-based reagents in acyl-transfer reactions by a metal-free pathway. The origin of reactivity of N-acyl-glutarimides in metal-free and metal-catalyzed processes is discussed and compared. 
    more » « less
  5. In this Special Issue on N-Heterocyclic Carbenes and Their Complexes in Catalysis, we report the first example of Suzuki–Miyaura cross-coupling of amides catalyzed by well-defined, air- and moisture-stable nickel/NHC (NHC = N-heterocyclic carbene) complexes. The selective amide bond N–C(O) activation is achieved by half-sandwich, cyclopentadienyl [CpNi(NHC)Cl] complexes. The following order of reactivity of NHC ligands has been found: IPr > IMes > IPaul ≈ IPr*. Both the neutral and the cationic complexes are efficient catalysts for the Suzuki–Miyaura cross-coupling of amides. Kinetic studies demonstrate that the reactions are complete in < 1 h at 80 °C. Complete selectivity for the cleavage of exocyclic N-acyl bond has been observed under the experimental conditions. Given the utility of nickel catalysis in activating unreactive bonds, we believe that well-defined and bench-stable [CpNi(NHC)Cl] complexes will find broad application in amide bond and related cross-couplings of bench-stable acyl-electrophiles. 
    more » « less