Abstract While Civis the most common absorption line in broad absorption line quasar spectra, Balmer absorption lines (BALs) are among the rarest. We present analysis of Balmer absorption in a sample of 14 iron low-ionization BAL quasars (FeLoBALQs); eight are new identifications. We measured velocity offset, width, and apparent optical depth. The partial covering that is ubiquitous in BAL quasar spectra alters the measured Balmer optical depth ratios; accounting for this, we estimated the true H(n= 2) column density. We found the anticipated correlation between Eddington ratio and outflow speed, but it is weak in this sample because nearly all of the objects have the low outflow speeds characterizing loitering outflow FeLoBAL quasars, objects that are also found to have low accretion rates. Measurements ofdN/dv, the differential column density with respect to the outflow speed, are anticorrelated with the luminosity and Eddington ratio: the strongest absorption is observed at the lowest speeds in the lowest-luminosity objects. The absorption line width is correlated withαoi, theFλpoint-to-point slope between 5100 Å and 3μm. This parameter is strongly correlated with the Eddington ratio among low-redshift quasars. BALs have been recently found in the spectra of little red dots (LRDs), a class of high-redshift objects discovered by JWST. We note suggestive similarities between LRDs and FeLoBAL quasars in the emission-line shape, the presence of steep reddening and a scattered blue continuum, the lack of hot dust emission, and X-ray weakness.
more »
« less
The Physical Properties of Low-redshift FeLoBAL Quasars. III. The Location and Geometry of the Outflows
Abstract We present continued analysis of a sample of low-redshift iron low-ionization broad-absorption-line quasars (FeLoBALQs). Choi et al. presentedSimBALspectral analysis of broad-absorption-line (BAL) outflows in 50 objects. Leighly et al. analyzed the optical emission lines of 30 of those 50 objects and found that they are characterized by either a high accretion rate (LBol/LEdd> 0.3) or low accretion rate (0.03 <LBol/LEdd< 0.3). We report that the outflow velocity is inversely correlated with the BAL location among the high-accretion-rate objects, with the highest velocities observed in parsec-scale outflows. In contrast, the low-Eddington-ratio objects showed the opposite trend. We confirmed the known relationship between the outflow velocity andLBol/LEddand found that the scatter plausibly originates in the force multiplier (launch radius) in the low(high)-accretion-rate objects. A log volume filling factor between −6 and −4 was found in most outflows but was as high as −1 for low-velocity compact outflows. We investigated the relationship between the observed [Oiii] emission and that predicted from the BAL gas. We found that these could be reconciled if the emission-line covering fraction depends on the Seyfert type and BAL location. The difference between the predicted and observed [Oiii] luminosity is correlated with the outflow velocity, suggesting that [Oiii] emission in high-Eddington-ratio objects may be broad and hidden under Feiiemission. We suggest that the physical differences in the outflow properties as a function of location in the quasar and accretion rate point to different formation, acceleration, and confinement mechanisms for the two FeLoBALQ types.
more »
« less
- PAR ID:
- 10370804
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 936
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 110
- Size(s):
- Article No. 110
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We report the results of an analysis of the Hβemission line region of a sample of 30 low-redshift (z< 1) iron low-ionization broad absorption line quasars (FeLoBALQs). Eleven of these objects are newly classified as FeLoBALQs. A matched sample of 132 unabsorbed quasars was analyzed in parallel. The emission lines showed the well-known anticorrelation between the [Oiii] and Feiiemission. Using a summary statistic calledE1 to quantify this anticorrelation, we found that while the distribution ofE1 for the unabsorbed quasars has a single peak, the FeLoBALQs have a bimodal shape in this parameter. Previous studies have shown that the line emission properties of BAL and non-BALQs are consistent; therefore, the difference in the Hβregion emission between FeLoBALQs and unabsorbed quasars is a new result. The two populations of FeLoBALQs are characterized by low and high bolometric luminosities and Eddington ratios. Some previous studies have suggested that BALQs are high accretion rate objects and therefore the discovery of the low accretion rate branch of FeLoBAL quasars was unexpected. We also found that the HβFWHM is systematically broader among the FeLoBALQs, implying a higher inclination viewing angle or a dearth of low velocity line emitting gas.more » « less
-
Abstract We analyze Very Large Telescope/UVES observations of the quasar SDSS J024221.87+004912.6. We identify four absorption outflow systems: a Civbroad absorption line (BAL) atv≈ −18,000 km s−1and three narrower low-ionization systems with centroid velocities ranging from –1200 to –3500 km s−1. These outflows show similar physical attributes to the [Oiii] outflows studied by Liu et al. (2013). We find that two of the systems are energetic enough to contribute to active galactic nucleus feedback, with one system reaching above 5% of the quasar’s Eddington luminosity. We also find that this system is at a distance of 67 kpc away from the quasar, the farthest detected mini-BAL absorption outflow from its central source to date. In addition, we examine the time-variability of the BAL and find that its velocity monotonically increases, while the trough itself becomes shallower over time.more » « less
-
Abstract Quasar feedback is a key ingredient in shaping galaxy evolution. A rare population of extremely red quasars (ERQs) atz= 2−3 are often associated with high-velocity [Oiii]λ5008 outflows and may represent sites of strong feedback. In this paper, we present an X-ray study of 50 ERQs to investigate the link between the X-ray and outflow properties of these intriguing objects. Using hardness ratio analysis, we confirm that the ERQs are heavily obscured systems with gas column density reachingNH= 1023−24cm−2. We identify 20 X-ray-nondetected ERQs at high mid-infrared (MIR) luminosities ofνLν,6μm≳ 3 × 1046erg s−1. By stacking the X-ray observations, we find that the nondetected ERQs are on average underluminous in X-rays by a factor of ∼10 for their MIR luminosities. We consider such X-ray weakness to be due to both heavy gas absorption and intrinsic factors. Moreover, we find that the X-ray-weak sources also display higher-velocity outflows. One option to explain this trend is that weaker X-rays facilitate more vigorous line-driven winds, which then accelerate the [Oiii]-emitting gas to kiloparsec scales. Alternatively, super-Eddington accretion could also lead to intrinsic X-ray weakness and more powerful continuum-driven outflow.more » « less
-
Abstract We present the optical–near-infrared spectral energy distributions (SED) and near-infrared variability properties of 30 low-redshift iron low-ionization Broad Absorption Line quasars (FeLoBALQs) and matched samples of LoBALQs and unabsorbed quasars. Significant correlations between the SED properties and accretion rate indicators found among the unabsorbed comparison sample objects suggest an intrinsic origin for SED differences. A range of reddening likely mutes these correlations among the FeLoBAL quasars. The rest-frame optical-band reddening is correlated with the location of the outflow, suggesting a link between the outflows and the presence of dust. We analyzed the WISE variability and provide a correction for photometry uncertainties in an appendix. We found an anticorrelation between the variability amplitude and inferred continuum emission region size, and we suggest that as the origin of the anticorrelation between variability amplitude and luminosity typically observed in quasars. We found that the LoBALQ Optical Emission-line and other parameters are more similar to those of the unabsorbed continuum sample objects than the FeLoBALQs. Thus, FeLoBAL quasars are a special population of objects. We interpret the results using an accretion-rate scenario for FeLoBAL quasars. The high-accretion-rate FeLoBAL quasars are radiating powerfully enough to drive a thick, high-velocity outflow. Quasars with intermediate accretion rates may have an outflow, but it is not sufficiently thick to include Feiiabsorption. Low-accretion-rate FeLoBAL outflows originate in absorption in a failing torus, no longer optically thick enough to reprocess radiation into the near-IR.more » « less
An official website of the United States government
