skip to main content

Title: Observations and Simulations of Radio Emission and Magnetic Fields in Minkowski's Object

We combine new data from the Karl G. Jansky Very Large Array with previous radio observations to create a more complete picture of the ongoing interactions between the radio jet from galaxy NGC 541 and the star-forming system known as Minkowski’s Object (MO). We then compare those observations with synthetic radio data generated from a new set of magnetohydrodynamic simulations of jet–cloud interactions specifically tailored to the parameters of MO. The combination of radio intensity, polarization, and spectral index measurements all convincingly support the interaction scenario and provide additional constraints on the local dynamical state of the intracluster medium and the time since the jet–cloud interaction first began. In particular, we show that only a simulation with a bent radio jet can reproduce the observations.

; ; ; ; ; ;
Publication Date:
Journal Name:
The Astrophysical Journal
Page Range or eLocation-ID:
Article No. 130
DOI PREFIX: 10.3847
Sponsoring Org:
National Science Foundation
More Like this

    This is the fourth paper of a series investigating the AGN fuelling/feedback processes in a sample of 11 nearby low-excitation radio galaxies (LERGs). In this paper, we present follow-up Atacama Large Millimeter/submillimeter Array (ALMA) observations of one source, NGC 3100, targeting the 12CO(1-0), 12CO(3-2), HCO+(4-3), SiO(3-2), and HNCO(6-5) molecular transitions. 12CO(1-0) and 12CO(3-2) lines are nicely detected and complement our previous 12CO(2-1) data. By comparing the relative strength of these three CO transitions, we find extreme gas excitation conditions (i.e. Tex ≳ 50 K) in regions that are spatially correlated with the radio lobes, supporting the case for a jet–ISM interaction. An accurate study of the CO kinematics demonstrates that although the bulk of the gas is regularly rotating, two distinct non-rotational kinematic components can be identified in the inner gas regions: one can be associated to inflow/outflow streaming motions induced by a two-armed spiral perturbation; the second one is consistent with a jet-induced outflow with vmax ≈ 200 km s−1 and $\dot{M}\lesssim 0.12$ M⊙ yr−1. These values indicate that the jet-CO coupling ongoing in NGC 3100 is only mildly affecting the gas kinematics, as opposed to what expected from existing simulations and other observational studies of (sub-)kpc scale jet–cold gas interactions. HCO+(4-3) emission is tentatively detectedmore »in a small area adjacent to the base of the northern radio lobe, possibly tracing a region of jet-induced gas compression. The SiO(3-2) and HNCO(6-5) shock tracers are undetected: this – along with the tentative HCO+(4-3) detection – may be consistent with a deficiency of very dense (i.e. ncrit > 106 cm−3) cold gas in the central regions of NGC 3100.

    « less
  2. Abstract

    Thin synchrotron-emitting filaments are increasingly seen in the intracluster medium (ICM). We present the first example of a direct interaction between a magnetic filament, a radio jet, and a dense ICM clump in the poor cluster A194. This enables the first exploration of the dynamics and possible histories of magnetic fields and cosmic rays in such filaments. Our observations are from the MeerKAT Galaxy Cluster Legacy Survey and the LOFAR Two-Meter Sky Survey. Prominent 220 kpc long filaments extend east of radio galaxy 3C40B, with very faint extensions to 300 kpc, and show signs of interaction with its northern jet. They curve around a bend in the jet and intersect the jet in Faraday depth space. The X-ray surface brightness drops across the filaments; this suggests that the relativistic particles and fields contribute significantly to the pressure balance and evacuate the thermal plasma in a ∼35 kpc cylinder. We explore whether the relativistic electrons could have streamed along the filaments from 3C40B, and present a plausible alternative whereby magnetized filaments are (a) generated by shear motions in the large-scale, post-merger ICM flow, (b) stretched by interactions with the jet and flows in the ICM, amplifying the embedded magnetic fields,more »and (c) perfused by re-energized relativistic electrons through betatron-type acceleration or diffusion of turbulently accelerated ICM cosmic-ray electrons. We use the Faraday depth measurements to reconstruct some of the 3D structures of the filameGnts and of 3C40A and B.

    « less
  3. Abstract

    Recently, the Hydrogen Epoch of Reionization Array (HERA) has produced the experiment’s first upper limits on the power spectrum of 21 cm fluctuations atz∼ 8 and 10. Here, we use several independent theoretical models to infer constraints on the intergalactic medium (IGM) and galaxies during the epoch of reionization from these limits. We find that the IGM must have been heated above the adiabatic-cooling threshold byz∼ 8, independent of uncertainties about IGM ionization and the radio background. Combining HERA limits with complementary observations constrains the spin temperature of thez∼ 8 neutral IGM to 27 KT¯S630 K (2.3 KT¯S640 K) at 68% (95%) confidence. They therefore also place a lower bound on X-ray heating, a previously unconstrained aspects of early galaxies. For example, if the cosmic microwave background dominates thez∼ 8 radio background, the new HERA limits imply that the first galaxies produced X-rays more efficiently than local ones. Thez∼ 10 limits require even earlier heating if dark-matter interactions cool the hydrogen gas. If an extra radio background is produced by galaxies, we rule out (at 95% confidence) the combination of high radio and low X-raymore »luminosities ofLr,ν/SFR > 4 × 1024W Hz−1M1yr andLX/SFR < 7.6 × 1039erg s−1M1yr. The new HERA upper limits neither support nor disfavor a cosmological interpretation of the recent Experiment to Detect the Global EOR Signature (EDGES) measurement. The framework described here provides a foundation for the interpretation of future HERA results.

    « less

    Relativistic amplification boosts the contribution of the jet base to the total emission in blazars, thus making single-dish observations useful and practical to characterize their physical state, particularly during episodes of enhanced multiwavelength activity. Following the detection of a new gamma-ray source by Fermi-LAT in 2017 July, we observed S4 0444+63 in order to secure its identification as a gamma-ray blazar. We conducted observations with the Medicina and Noto radio telescopes at 5, 8, and 24 GHz for a total of 12 epochs between 2017 August 1 and 2018 September 22. We carried out the observations with on-the-fly cross-scans and reduced the data with our newly developed Cross-scan Analysis Pipeline, which we present here in detail for the first time. We found the source to be in an elevated state of emission at radio wavelength, compared to historical values, which lasted for several months. The maximum luminosity was reached on 2018 May 16 at 24 GHz, with $L_{24}=(1.7\pm 0.3)\times 10^{27}\ \mathrm{W\, Hz}^{-1}$; the spectral index was found to evolve from slightly rising to slightly steep. Besides the new observations, which have proved to be an effective and efficient tool to secure the identification of the source, additional single dish and very longmore »baseline interferometry data provide further insight on the physics of the source. We estimate a synchrotron peak frequency νpeak = 1012.97 Hz and a Doppler factor in excess of δ ∼ 5.0, with both quantities playing a role in the gamma-ray emission from the source.

    « less

    The highly-substructured outskirts of the Magellanic Clouds provide ideal locations for studying the complex interaction history between both Clouds and the Milky Way (MW). In this paper, we investigate the origin of a >20° long arm-like feature in the northern outskirts of the Large Magellanic Cloud (LMC) using data from the Magellanic Edges Survey (MagES) and Gaia EDR3. We find that the arm has a similar geometry and metallicity to the nearby outer LMC disc, indicating that it is comprised of perturbed disc material. Whilst the azimuthal velocity and velocity dispersions along the arm are consistent with those in the outer LMC, the in-plane radial velocity and out-of-plane vertical velocity are significantly perturbed from equilibrium disc kinematics. We compare these observations to a new suite of dynamical models of the Magellanic/MW system, which describe the LMC as a collection of tracer particles within a rigid potential, and the SMC as a rigid Hernquist potential. Our models indicate the tidal force of the MW during the LMC’s infall is likely responsible for the observed increasing out-of-plane velocity along the arm. Our models also suggest close LMC/SMC interactions within the past Gyr, particularly the SMC’s pericentric passage ∼150 Myr ago and amore »possible SMC crossing of the LMC disc plane ∼400 Myr ago, likely do not perturb stars that today comprise the arm. Historical interactions with the SMC prior to ∼1 Gyr ago may be required to explain some of the observed kinematic properties of the arm, in particular its strongly negative in-plane radial velocity.

    « less