skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Building on a human-centred, iterative, and agile co-design strategy to facilitate the availability of deep ocean data
Abstract Current information on the status and trends of ocean change is needed to support effective and responsive management, particularly for the deep ocean. Creating consistent, collaborative and actionable mechanisms is a key component of the Deep Ocean Observing Strategy, a program of the United Nations Decade of Ocean Science for Sustainable Development. Here, we share an iterative, agile, and human-centred approach to co-designing datastreams for deep-sea indicators that serves stakeholders, including US National Marine Sanctuaries, presented as a four-phase project roadmap initially focused on the Monterey Bay National Marine Sanctuary, and then generalized to other areas such as the US West Coast, offshore wind development areas, and managed marine spaces globally. Ongoing efforts to provide key physical, biogeochemical, biological, and ecosystem variables for California's Marine Protected Areas are informing this co-design process. We share lessons learned so far and present co-design as a useful tool for (1) assessing the availability of information from deep ecosystems, (2) ensuring interoperability, and (3) providing essential information on the status and trends of indicators. Documenting and sharing this co-design strategy and scalable four-phase roadmap will further the aims of DOOS and other initiatives, including the Deep Ocean Stewardship Initiative and Challenger 150.  more » « less
Award ID(s):
2114717
PAR ID:
10370851
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
ICES Journal of Marine Science
Volume:
80
Issue:
2
ISSN:
1054-3139
Format(s):
Medium: X Size: p. 347-351
Size(s):
p. 347-351
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Mapped monthly data products of surface ocean acidification indicators from 1998 to 2022 on a 0.25° by 0.25° spatial grid have been developed for eleven U.S. large marine ecosystems (LMEs). The data products were constructed using observations from the Surface Ocean CO2Atlas, co-located surface ocean properties, and two types of machine learning algorithms: Gaussian mixture models to organize LMEs into clusters of similar environmental variability and random forest regressions (RFRs) that were trained and applied within each cluster to spatiotemporally interpolate the observational data. The data products, called RFR-LMEs, have been averaged into regional timeseries to summarize the status of ocean acidification in U.S. coastal waters, showing a domain-wide carbon dioxide partial pressure increase of 1.4 ± 0.4 μatm yr−1and pH decrease of 0.0014 ± 0.0004 yr−1. RFR-LMEs have been evaluated via comparisons to discrete shipboard data, fixed timeseries, and other mapped surface ocean carbon chemistry data products. Regionally averaged timeseries of RFR-LME indicators are provided online through the NOAA National Marine Ecosystem Status web portal. 
    more » « less
  2. Blasiak, Robert (Ed.)
    Abstract Marine Life 2030 is a programme endorsed by the United Nations Decade of Ocean Science for Sustainable Development (the Ocean Decade) to establish a globally coordinated system that delivers knowledge of ocean life to those who need it, promoting human well-being, sustainable development, and ocean conservation. It is an open network to unite existing and new programmes into a co-designed, global framework to share information on methods, standards, observations, and applications. Goals include realizing interoperable information and transforming the observation and forecasting of marine life for the benefit of all people. Co-design, sharing local capacity, and coordination between users of ocean resources across regions is fundamental to enable sustainable use and conservation. A novel, bottom-up networking structure is now engaging members of the ocean community to address local issues, with Marine Life 2030 facilitating the linkage between groups across different regions to meet the challenges of the Ocean Decade. A variety of metrics, including those proposed by the Group on Earth Observations, will be used to track the success of the co-design process. 
    more » « less
  3. null (Ed.)
    Experimental studies assessing the potential impacts of ocean acidification on marine organisms have rapidly expanded and produced a wealth of empirical data over the past decade. This perspective examines four key areas of transformative developments in experimental approaches: (1) methodological advances; (2) advances in elucidating physiological and molecular mechanisms behind observed CO 2 effects; (3) recognition of short-term CO 2 variability as a likely modifier of species sensitivities (Ocean Variability Hypothesis); and (4) consensus on the multistressor nature of marine climate change where effect interactions are still challenging to anticipate. No single experiment allows predicting the fate of future populations. But sustaining the accumulation of empirical evidence is critical for more robust estimates of species reaction norms and thus for enabling better modeling approaches. Moreover, advanced experimental approaches are needed to address knowledge gaps including changes in species interactions and intraspecific variability in sensitivity and its importance for the adaptation potential of marine organisms to a high CO 2 world. 
    more » « less
  4. In this paper, we outline the need for a coordinated international effort toward the building of an open-access Global Ocean Oxygen Database and ATlas (GO 2 DAT) complying with the FAIR principles (Findable, Accessible, Interoperable, and Reusable). GO 2 DAT will combine data from the coastal and open ocean, as measured by the chemical Winkler titration method or by sensors (e.g., optodes, electrodes) from Eulerian and Lagrangian platforms (e.g., ships, moorings, profiling floats, gliders, ships of opportunities, marine mammals, cabled observatories). GO 2 DAT will further adopt a community-agreed, fully documented metadata format and a consistent quality control (QC) procedure and quality flagging (QF) system. GO 2 DAT will serve to support the development of advanced data analysis and biogeochemical models for improving our mapping, understanding and forecasting capabilities for ocean O 2 changes and deoxygenation trends. It will offer the opportunity to develop quality-controlled data synthesis products with unprecedented spatial (vertical and horizontal) and temporal (sub-seasonal to multi-decadal) resolution. These products will support model assessment, improvement and evaluation as well as the development of climate and ocean health indicators. They will further support the decision-making processes associated with the emerging blue economy, the conservation of marine resources and their associated ecosystem services and the development of management tools required by a diverse community of users (e.g., environmental agencies, aquaculture, and fishing sectors). A better knowledge base of the spatial and temporal variations of marine O 2 will improve our understanding of the ocean O 2 budget, and allow better quantification of the Earth’s carbon and heat budgets. With the ever-increasing need to protect and sustainably manage ocean services, GO 2 DAT will allow scientists to fully harness the increasing volumes of O 2 data already delivered by the expanding global ocean observing system and enable smooth incorporation of much higher quantities of data from autonomous platforms in the open ocean and coastal areas into comprehensive data products in the years to come. This paper aims at engaging the community (e.g., scientists, data managers, policy makers, service users) toward the development of GO 2 DAT within the framework of the UN Global Ocean Oxygen Decade (GOOD) program recently endorsed by IOC-UNESCO. A roadmap toward GO 2 DAT is proposed highlighting the efforts needed (e.g., in terms of human resources). 
    more » « less
  5. Marine protected areas (MPAs) are a key tool for achieving goals for biodiversity conservation and human well-being, including improving climate resilience and equitable access to nature. At a national level, they are central components in the U.S. commitment to conserve at least 30% of U.S. waters by 2030. By definition, the primary goal of an MPA is the long-term conservation of nature; however, not all MPAs provide the same ecological and social benefits. A U.S. system of MPAs that is equitable, well-managed, representative and connected, and includes areas at a level of protection that can deliver desired outcomes is best positioned to support national goals. We used a new MPA framework, The MPA Guide, to assess the level of protection and stage of establishment of the 50 largest U.S. MPAs, which make up 99.7% of the total U.S. MPA area (3.19 million km2). Over 96% of this area, including 99% of that which is fully or highly protected against extractive or destructive human activities, is in the central Pacific ocean. Total MPA area in other regions is sparse – only 1.9% of the U.S. ocean excluding the central Pacific is protected in any kind of MPA (120,976 km2). Over three quarters of the non-central Pacific MPA area is lightly or minimally protected against extractive or destructive human activities. These results highlight an urgent need to improve the quality, quantity, and representativeness of MPA protection in U.S. waters to bring benefits to human and marine communities. We identify and review the state of the science, including focal areas for achieving desired MPA outcomes and lessons learned from places where sound ecological and social design principles come together in MPAs that are set up to achieve national goals for equity, climate resilience, and biodiversity conservation. We recommend key opportunities for action specific to the U.S. context, including increasing funding, research, equity, and protection level for new and existing U.S. MPAs. 
    more » « less