skip to main content


Title: Formation of dust rings and gaps in non-ideal MHD discs through meridional gas flows
ABSTRACT

Rings and gaps are commonly observed in the dust continuum emission of young stellar discs. Previous studies have shown that substructures naturally develop in the weakly ionized gas of magnetized, non-ideal MHD discs. The gas rings are expected to trap large mm/cm-sized grains through pressure gradient-induced radial dust–gas drift. Using 2D (axisymmetric) MHD simulations that include ambipolar diffusion and dust grains of three representative sizes (1 mm, 3.3 mm, and 1 cm), we show that the grains indeed tend to drift radially relative to the gas towards the centres of the gas rings, at speeds much higher than in a smooth disc because of steeper pressure gradients. However, their spatial distribution is primarily controlled by meridional gas motions, which are typically much faster than the dust–gas drift. In particular, the grains that have settled near the mid-plane are carried rapidly inwards by a fast accretion stream to the inner edges of the gas rings, where they are lifted up by the gas flows diverted away from the mid-plane by a strong poloidal magnetic field. The flow pattern in our simulation provides an attractive explanation for the meridional flows recently inferred in HD 163296 and other discs, including both ‘collapsing’ regions where the gas near the disc surface converges towards the mid-plane and a disc wind. Our study highlights the prevalence of the potentially observable meridional flows associated with the gas substructure formation in non-ideal MHD discs and their crucial role in generating rings and gaps in dust.

 
more » « less
Award ID(s):
1716259 1910106
NSF-PAR ID:
10370871
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
516
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
p. 2006-2022
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Recent high angular resolution ALMA observations have revealed numerous gaps in protoplanetary discs. A popular interpretation has been that planets open them. Most previous investigations of planet gap-opening have concentrated on viscous discs. Here, we carry out 2D (axisymmetric) global simulations of gap opening by a planet in a wind-launching non-ideal MHD disc with consistent thermochemistry. We find a strong concentration of poloidal magnetic flux in the planet-opened gap, where the gas dynamics are magnetically dominated. The magnetic field also drives a fast (nearly sonic) meridional gas circulation in the denser disc regions near the inner and outer edges of the gap, which may be observable through high-resolution molecular line observations. The gap is more ionized than its denser surrounding regions, with a better magnetic field–matter coupling. In particular, it has a much higher abundance of molecular ion HCO+, consistent with ALMA observations of the well-studied AS 209 protoplanetary disc that has prominent gaps and fast meridional motions reaching the local sound speed. Finally, we provide fitting formulae for the ambipolar and Ohmic diffusivities as a function of the disc local density, which can be used for future 3D simulations of planet gap-opening in non-ideal MHD discs where thermochemistry is too computationally expensive to evolve self-consistently with the magneto-hydrodynamics.

     
    more » « less
  2. ABSTRACT

    Radial substructures have now been observed in a wide range of protoplanetary discs (PPDs), from young to old systems; however, their formation is still an area of vigorous debate. Recent magnetohydrodynamic (MHD) simulations have shown that rings and gaps can form naturally in PPDs when non-ideal MHD effects are included. However, these simulations employ ad hoc approximations to the magnitudes of the magnetic diffusivities in order to facilitate ring growth. We replace the parametrization of these terms with a simple chemical network and grain distribution model to calculate the non-ideal effects in a more self-consistent way. We use a range of grain distributions to simulate grain formation for different disc conditions. Including ambipolar diffusion, we find that large grain populations (>1 $\mu$m), and those including a population of very small polyaromatic hydrocarbons (PAHs) facilitate the growth of periodic, stable rings, while intermediate-sized grains suppress ring formation. Including Ohmic diffusion removes the positive influence of PAHs, with only large grain populations still producing periodic ring and gap structures. These results relate closely to the degree of coupling between the magnetic field and the neutral disc material, quantified by the non-dimensional Elsasser number Λ (the ratio of magnetic forces to Coriolis force). For both the ambipolar-only and ambipolar-ohmic cases, if the total Elsasser number is initially of the order of unity along the disc mid-plane, ring and gap structures may develop.

     
    more » « less
  3. ABSTRACT

    The size of dust grains, a, is key to the physical and chemical processes in circumstellar discs, but observational constraints of grain size remain challenging. (Sub)millimetre continuum observations often show a per cent-level polarization parallel to the disc minor axis, which is generally attributed to scattering by ${\sim}100\, \mu{\rm m}$-sized spherical grains (with a size parameter x ≡ 2$\pi$a/λ < 1, where λ is the wavelength). Larger spherical grains (with x greater than unity) would produce opposite polarization direction. However, the inferred size is in tension with the opacity index β that points to larger mm/cm-sized grains. We investigate the scattering-produced polarization by large irregular grains with a range of x greater than unity with optical properties obtained from laboratory experiments. Using the radiation transfer code, RADMC-3D, we find that large irregular grains still produce polarization parallel to the disc minor axis. If the original forsterite refractive index in the optical is adopted, then all samples can produce the typically observed level of polarization. Accounting for the more commonly adopted refractive index using the DSHARP dust model, only grains with x of several (corresponding to ∼mm-sized grains) can reach the same polarization level. Our results suggest that grains in discs can have sizes in the millimetre regime, which may alleviate the tension between the grain sizes inferred from scattering and other means. Additionally, if large irregular grains are not settled to the mid-plane, their strong forward scattering can produce asymmetries between the near and far side of an inclined disc, which can be used to infer their presence.

     
    more » « less
  4. ABSTRACT

    Recent observations indicate that mm/cm-sized grains may exist in the embedded protostellar discs. How such large grains grow from the micron size (or less) in the earliest phase of star formation remains relatively unexplored. In this study, we take a first step to model the grain growth in the protostellar environment, using 2D (axisymmetric) radiation hydrodynamic and grain growth simulations. We show that the grain growth calculations can be greatly simplified by the ‘terminal velocity approximation’, where the dust drift velocity relative to the gas is proportional to its stopping time, which is proportional to the grain size. We find that the grain–grain collision from size-dependent terminal velocity alone is too slow to convert a significant fraction of the initially micron-sized grains into mm/cm sizes during the deeply embedded Class 0 phase. Substantial grain growth is achieved when the grain–grain collision speed is enhanced by a factor of 4. The dust growth above and below the disc midplane enables the grains to settle faster towards the midplane, which increases the local dust-to-gas ratio, which, in turn, speeds up further growth there. How this needed enhancement can be achieved is unclear, although turbulence is a strong possibility that deserves further exploration.

     
    more » « less
  5. ABSTRACT A number of young circumstellar discs show strikingly ordered (sub)millimetre polarization orientations along the minor axis, which is strong evidence for polarization due to scattering by ∼0.1 mm-sized grains. To test this mechanism further, we model the ALMA dust continuum and polarization data of HD 163296 using radmc-3d. We find that scattering by grains with a maximum size of 90  μm simultaneously reproduces the polarization observed at Band 7 and the unusually low spectral index (α ∼ 1.5) between Bands 7 and 6 in the optically thick inner disc as a result of more efficient scattering at the shorter wavelength. The low spectral index of ∼2.5 inferred for the optically thin gaps is reproduced by the same grains, as a result of telescope beam averaging of the gaps (with an intrinsic α ∼ 4) and their adjacent optically thick rings (where α ≲ 2). The tension between the grain sizes inferred from polarization and spectral index disappears because the low α values do not require large mm-sized grains. In addition, the polarization fraction has a unique azimuthal variation: higher along the major axis than the minor axis in the gaps, but vice versa in the rings. We find a rapidly declining polarization spectrum (with p ∝ λ−3 approximately) in the gaps, which becomes flattened or even inverted towards short wavelengths in the optically thick rings. These contrasting behaviours in the rings and gaps provide further tests for scattering-induced polarization via resolved multiwavelength observations. 
    more » « less