ABSTRACT Rings and gaps are commonly observed in the dust continuum emission of young stellar discs. Previous studies have shown that substructures naturally develop in the weakly ionized gas of magnetized, non-ideal MHD discs. The gas rings are expected to trap large mm/cm-sized grains through pressure gradient-induced radial dust–gas drift. Using 2D (axisymmetric) MHD simulations that include ambipolar diffusion and dust grains of three representative sizes (1 mm, 3.3 mm, and 1 cm), we show that the grains indeed tend to drift radially relative to the gas towards the centres of the gas rings, at speeds much higher than in a smooth disc because of steeper pressure gradients. However, their spatial distribution is primarily controlled by meridional gas motions, which are typically much faster than the dust–gas drift. In particular, the grains that have settled near the mid-plane are carried rapidly inwards by a fast accretion stream to the inner edges of the gas rings, where they are lifted up by the gas flows diverted away from the mid-plane by a strong poloidal magnetic field. The flow pattern in our simulation provides an attractive explanation for the meridional flows recently inferred in HD 163296 and other discs, including both ‘collapsing’ regions where the gas near the disc surface converges towards the mid-plane and a disc wind. Our study highlights the prevalence of the potentially observable meridional flows associated with the gas substructure formation in non-ideal MHD discs and their crucial role in generating rings and gaps in dust.
more »
« less
Dust concentration via coupled vertical settling and radial migration in substructured non-ideal MHD discs and early planet formation
ABSTRACT We investigate the dynamics of dust concentration in actively accreting, substructured, non-ideal magnetohydrodynamic wind-launching discs using two-dimensional and three-dimensional (3D) simulations incorporating pressureless dust fluids of various grain sizes and their aerodynamic feedback on gas dynamics. Our results reveal that mm/cm-sized grains are preferentially concentrated within the inner 5–10 au of the disc, where the dust-to-gas surface density ratio (local metallicity Z) significantly exceeds the canonical 0.01, reaching values up to 0.25. This enhancement arises from the interplay of dust settling and complex gas flows in the meridional plane, including mid-plane accretion streams at early times, mid-plane expansion driven by magnetically braked surface accretion at later times, and vigorous meridional circulation in spontaneously formed gas rings. The resulting size-dependent dust distribution has a strong spatial variation, with large grains preferentially accumulating in dense rings, particularly in the inner disc, while being depleted in low-density gas gaps. In 3D, these rings and gaps are unstable to Rossby wave instability, generating arc-shaped vortices that stand out more prominently than their gas counterparts in the inner disc because of preferential dust concentration at small radii. The substantial local enhancement of the dust relative to the gas could promote planetesimal formation via streaming instability, potentially aided by the ‘azimuthal drift’ streaming instability that operates efficiently in accreting discs and a lower Toomre Q expected in younger discs. Our findings suggest that actively accreting young discs may provide favourable conditions for early planetesimal formation, which warrants further investigation.
more »
« less
- Award ID(s):
- 2307199
- PAR ID:
- 10594413
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 540
- Issue:
- 1
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 1363-1377
- Size(s):
- p. 1363-1377
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)ABSTRACT We develop simple, physically motivated models for drag-induced dust–gas streaming instabilities, which are thought to be crucial for clumping grains to form planetesimals in protoplanetary discs. The models explain, based on the physics of gaseous epicyclic motion and dust–gas drag forces, the most important features of the streaming instability and its simple generalization, the disc settling instability. Some of the key properties explained by our models include the sudden change in the growth rate of the streaming instability when the dust-to-gas mass ratio surpasses one, the slow growth rate of the streaming instability compared to the settling instability for smaller grains, and the main physical processes underlying the growth of the most unstable modes in different regimes. As well as providing helpful simplified pictures for understanding the operation of an interesting and fundamental astrophysical fluid instability, our models may prove useful for analysing simulations and developing non-linear theories of planetesimal growth in discs.more » « less
-
ABSTRACT The streaming instability, a promising mechanism to drive planetesimal formation in dusty protoplanetary discs, relies on aerodynamic drag naturally induced by the background radial pressure gradient. This gradient should vary in discs, but its effect on the streaming instability has not been sufficiently explored. For this purpose, we use numerical simulations of an unstratified disc to study the non-linear saturation of the streaming instability with mono-disperse dust particles and survey a wide range of gradients for two distinct combinations of the particle stopping time and the dust-to-gas mass ratio. As the gradient increases, we find most kinematic and morphological properties increase but not always in linear proportion. The density distributions of tightly coupled particles are insensitive to the gradient whereas marginally coupled particles tend to concentrate by more than an order of magnitude as the gradient decreases. Moreover, dust–gas vortices for tightly coupled particles shrink as the gradient decreases, and we note higher resolutions are required to trigger the instability in this case. In addition, we find various properties at saturation that depend on the gradient may be observable and may help reconstruct models of observed discs dominated by streaming turbulence. In general, increased dust diffusion from stronger gradients can lower the concentration of dust filaments and can explain the higher solid abundances needed to trigger strong particle clumping and the reduced planetesimal formation efficiency previously found in vertically stratified simulations.more » « less
-
ABSTRACT Rings and gaps are routinely observed in the dust continuum emission of protoplanetary discs (PPDs). How they form and evolve remains debated. Previous studies have demonstrated the possibility of spontaneous gas rings and gaps formation in wind-launching discs. Here, we show that such gas substructures are unstable to the Rossby wave instability (RWI) through numerical simulations. Specifically, shorter wavelength azimuthal modes develop earlier, and longer wavelength ones dominate later, forming elongated (arc-like) anticyclonic vortices in the rings and (strongly magnetized) cyclonic vortices in the gaps that persist until the end of the simulation. Highly elongated vortices with aspect ratios of 10 or more are found to decay with time in our non-ideal magnetohydrodynamic (MHD) simulation, in contrast with the hydro case. This difference could be caused by magnetically induced motions, particularly strong meridional circulations with large values of the azimuthal component of the vorticity, which may be incompatible with the columnar structure preferred by vortices. The cyclonic and anticyclonic RWI vortices saturate at moderate levels, modifying but not destroying the rings and gaps in the radial gas distribution of the disc. In particular, they do not shut-off the poloidal magnetic flux accumulation in low-density regions and the characteristic meridional flow patterns that are crucial to the ring and gap formation in wind-launching discs. Nevertheless, the RWI and their associated vortices open up the possibility of producing non-axisymmetric dust features observed in a small fraction of PPDs through non-ideal MHD, although detailed dust treatment is needed to explore this possibility.more » « less
-
ABSTRACT Recent high angular resolution ALMA observations have revealed rich information about protoplanetary discs, including ubiquitous substructures and three-dimensional gas kinematics at different emission layers. One interpretation of these observations is embedded planets. Previous 3D planet–disc interaction studies are either based on viscous simulations or non-ideal magnetohydrodynamics (MHD) simulations with simple prescribed magnetic diffusivities. This study investigates the dynamics of gap formation in 3D non-ideal MHD discs using non-ideal MHD coefficients from the look-up table that is self-consistently calculated based on the thermochemical code. We find a concentration of the poloidal magnetic flux in the planet-opened gap (in agreement with previous work) and enhanced field-matter coupling due to gas depletion, which together enable efficient magnetic braking of the gap material, driving a fast accretion layer significantly displaced from the disc mid-plane. The fast accretion helps deplete the gap further and is expected to negatively impact the planet growth. It also affects the corotation torque by shrinking the region of horseshoe orbits on the trailing side of the planet. Together with the magnetically driven disc wind, the fast accretion layer generates a large, persistent meridional vortex in the gap, which breaks the mirror symmetry of gas kinematics between the top and bottom disc surfaces. Finally, by studying the kinematics at the emission surfaces, we discuss the implications of planets in realistic non-ideal MHD discs on kinematics observations.more » « less
An official website of the United States government
