skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: PhaseLink: A Deep Learning Approach to Seismic Phase Association
Abstract Seismic phase association is a fundamental task in seismology that pertains to linking together phase detections on different sensors that originate from a common earthquake. It is widely employed to detect earthquakes on permanent and temporary seismic networks and underlies most seismicity catalogs produced around the world. This task can be challenging because the number of sources is unknown, events frequently overlap in time, or can occur simultaneously in different parts of a network. We present PhaseLink, a framework based on recent advances in deep learning for grid‐free earthquake phase association. Our approach learns to link phases together that share a common origin and is trained entirely on millions of synthetic sequences ofPandSwave arrival times generated using a 1‐D velocity model. Our approach is simple to implement for any tectonic regime, suitable for real‐time processing, and can naturally incorporate errors in arrival time picks. Rather than tuning a set of ad hoc hyperparameters to improve performance, PhaseLink can be improved by simply adding examples of problematic cases to the training data set. We demonstrate the state‐of‐the‐art performance of PhaseLink on a challenging sequence from southern California and synthesized sequences from Japan designed to test the point at which the method fails. For the examined data sets, PhaseLink can precisely associate phases to events that occur only ∼12 s apart in origin time. This approach is expected to improve the resolution of seismicity catalogs, add stability to real‐time seismic monitoring, and streamline automated processing of large seismic data sets.  more » « less
Award ID(s):
1818582
PAR ID:
10371062
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
124
Issue:
1
ISSN:
2169-9313
Page Range / eLocation ID:
p. 856-869
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Accurate and (near) real-time earthquake monitoring provides the spatial and temporal behaviors of earthquakes for understanding the nature of earthquakes, and also helps in regional seismic hazard assessments and mitigations. Because of the increase in both the quality and quantity of seismic data, an automated earthquake monitoring system is needed. Most of the traditional methods for detecting earthquake signals and picking phases are based on analyses of features in recordings of an individual earthquake and/or their differences from background noises. When seismicity is high, the seismograms are complicated, and, therefore, traditional analysis methods often fail. With the development of machine learning algorithms, earthquake signal detection and seismic phase picking can be more accurate using the features obtained from a large amount of earthquake recordings. We have developed an attention recurrent residual U-Net algorithm, and used data augmentation techniques to improve the accuracy of earthquake detection and seismic phase picking on complex seismograms that record multiple earthquakes. The use of probability functions of P and S arrivals and potential P and S arrival pairs of earthquakes can increase the computational efficiency and accuracy of backprojection for earthquake monitoring in large areas. We applied our workflow to monitor the earthquake activity in southern California during the 2019 Ridgecrest sequence. The distribution of earthquakes determined by our method is consistent with that in the Southern California Earthquake Data Center (SCEDC) catalog. In addition, the number of earthquakes in our catalog is more than three times that of the SCEDC catalog. Our method identifies additional earthquakes that are close in origin times and/or locations, and are not included in the SCEDC catalog. Our algorithm avoids misidentification of seismic phases for earthquake location. In general, our algorithm can provide reliable earthquake monitoring on a large area, even during a high seismicity period. 
    more » « less
  2. Abstract How faulting processes lead to a large earthquake is a fundamental question in seismology. To better constrain this pre‐seismic stage, we create a dense seismic catalog via template matching to analyze the precursory phase of the Mw 6.1 L’Aquila earthquake that occurred in central Italy in 2009. We estimate several physical parameters in time, such as the coefficient of variation, the seismic moment release, the effective stress drop, and analyze spatio‐temporal patterns to study the evolution of the sequence and the earthquake interactions. We observe that the precursory phase experiences multiple accelerations of the seismicity rate that we divide into two main sequences with different signatures and features: the first part exhibits weak earthquake interactions, quasi‐continuous moment release, slow spatial migration patterns, and a lower effective stress drop, pointing to aseismic processes. The second sequence exhibits strong temporal clustering, fast seismicity expansion, and a larger effective stress drop typical of a stress transfer process. We interpret the differences in seismicity behaviors between the two sequences as distinct physical mechanisms that are controlled by different physical properties of the fault system. We conclude that the L’Aquila earthquake is preceded by a complex preparation, made up of different physical processes over different time scales on faults with different physical properties. 
    more » « less
  3. ABSTRACT Rapid association of seismic phases and event location are crucial for real‐time seismic monitoring. We propose a new method, named rapid earthquake association and location (REAL), for associating seismic phases and locating seismic events rapidly, simultaneously, and automatically. REAL combines the advantages of both pick‐based and waveform‐based detection and location methods. It associates arrivals of different seismic phases and locates seismic events primarily through counting the number of P and S picks and secondarily from travel‐time residuals. A group of picks are associated with a particular earthquake if there are enough picks within the theoretical travel‐time windows. The location is determined to be at the grid point with the most picks, and if multiple locations have the same maximum number of picks, the grid point among them with smallest travel‐time residuals. We refine seismic locations using a least‐squares location method (VELEST) and a high‐precision relative location method (hypoDD). REAL can be used for rapid seismic characterization due to its computational efficiency. As an example application, we apply REAL to earthquakes in the 2016 central Apennines, Italy, earthquake sequence occurring during a five‐day period in October 2016, midway in time between the two largest earthquakes. We associate and locate more than three times as many events (3341) as are in Italy's National Institute of Geophysics and Volcanology routine catalog (862). The spatial distribution of these relocated earthquakes shows a similar but more concentrated pattern relative to the cataloged events. Our study demonstrates that it is possible to characterize seismicity automatically and quickly using REAL and seismic picks. 
    more » « less
  4. Abstract We analyze nearest‐neighbor proximities of earthquakes in California based on the joint distribution (T,R) of rescaled timeTand rescaled distanceRbetween pairs of earthquakes (Zaliapin & Ben‐Zion, 2013a,https://doi.org/10.1002/jgrb.50179), using seismic catalogs from several regions and several catalogs for the San Jacinto Fault Zone (SJFZ). The study aims to identify informative modes in nearest‐neighbor diagrams beyond the general background and clustered modes, and to assess seismic catalogs derived by different methods. The results show that earthquake clusters with large and small‐to‐medium mainshocks have approximately diagonal and horizontal (T,R) distributions of the clustered mode, respectively, reflecting different triggering distances of mainshocks. Earthquakes in the creeping section of San Andreas Fault have a distinct “repeaters mode” characterized by very large rescaled timesTand very small rescaled distancesR, due to nearly identical locations of repeating events. Induced seismicity in the Geysers and Coso geothermal fields follow mostly the background mode, but with larger rescaled timesTand smaller rescaled distancesRcompared to tectonic background seismicity. We also document differences in (T,R) distributions of catalogs constructed by different techniques (analyst‐picks, template‐matching and deep‐learning) for the SJFZ, and detect a mode with very largeRand smallTin the template‐matching and deep‐learning based catalogs. This mode may reflect dynamic triggering by passing waves and/or catalog artifacts. 
    more » « less
  5. null (Ed.)
    Abstract Seismograms are convolution results between seismic sources and the media that seismic waves propagate through, and, therefore, the primary observations for studying seismic source parameters and the Earth interior. The routine earthquake location and travel-time tomography rely on accurate seismic phase picks (e.g., P and S arrivals). As data increase, reliable automated seismic phase-picking methods are needed to analyze data and provide timely earthquake information. However, most traditional autopickers suffer from low signal-to-noise ratio and usually require additional efforts to tune hyperparameters for each case. In this study, we proposed a deep-learning approach that adapted soft attention gates (AGs) and recurrent-residual convolution units (RRCUs) into the backbone U-Net for seismic phase picking. The attention mechanism was implemented to suppress responses from waveforms irrelevant to seismic phases, and the cooperating RRCUs further enhanced temporal connections of seismograms at multiple scales. We used numerous earthquake recordings in Taiwan with diverse focal mechanisms, wide depth, and magnitude distributions, to train and test our model. Setting the picking errors within 0.1 s and predicted probability over 0.5, the AG with recurrent-residual convolution unit (ARRU) phase picker achieved the F1 score of 98.62% for P arrivals and 95.16% for S arrivals, and picking rates were 96.72% for P waves and 90.07% for S waves. The ARRU phase picker also shown a great generalization capability, when handling unseen data. When applied the model trained with Taiwan data to the southern California data, the ARRU phase picker shown no cognitive downgrade. Comparing with manual picks, the arrival times determined by the ARRU phase picker shown a higher consistency, which had been evaluated by a set of repeating earthquakes. The arrival picks with less human error could benefit studies, such as earthquake location and seismic tomography. 
    more » « less