skip to main content


Title: Bushfire smoke plume composition and toxicological assessment from the 2019–2020 Australian Black Summer
Abstract 

Many of the population centres in southeast Australia were swathed in bushfire smoke during the 2019–2020 austral summer. Bushfires burning during what is now known as the Black Summer was historically large and severe, and the fire season historically long. The chemical composition in the gas and aerosol phase of aged plumes measured near Wollongong, NSW in early 2020 is reported in this work. Enhancement ratios to carbon monoxide are presented for thirteen species (acetaldehyde, acetone, acetonitrile, black carbon aerosol, benzene, methane, methacrolein + methyl vinyl ketone, methyl ethyl ketone, methanol, ammonium ion PM1fraction, nitrate ion PM1fraction, organic PM1fraction and PM2.5). Observed plume composition is comparable to that measured in fresh smoke from Australian fires reported in the literature. Enhancements of biogenic volatile organic compounds such as isoprene (smoke-effected period mean 1 ppb, maximum 6 ppb) were observed along with elevated concentrations of particulate variables. Enhancement ratios reported here can be used in plume modelling of landscape-scale fires and assist in concentration estimates of infrequently measured atmospheric pollutants. The relative toxicological contribution of species present in the plumes was determined for plume exposure at the measurement site and for concentrated plumes at a population centre case study. Similar results were apparent at both locations. Contributions to the toxicological loading were dominated by respirable particles (~ 52–63% total contribution), formaldehyde (~ 30–39% total contribution) and acrolein. This is a reminder to consider the toxicological contributions in the gas phase when considering health impacts of population exposure to bushfire smoke.

 
more » « less
NSF-PAR ID:
10371106
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Air Quality, Atmosphere & Health
Volume:
15
Issue:
11
ISSN:
1873-9318
Page Range / eLocation ID:
p. 2067-2089
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    As part of the WINTER (Wintertime Investigation of Transport, Emissions, and Reactivity) campaign, a Particle‐into‐Liquid Sampler with a fraction collector was flown aboard the National Center for Atmospheric Research C‐130 aircraft. Two‐minute integrated liquid samples containing dissolved fine particulate matter (PM1) species were collected and analyzed off‐line for the smoke marker levoglucosan using high‐performance anion‐exchange chromatography‐pulsed amperometric detection to compare levoglucosan with aerosol mass spectrometer (AMS) biomass burning markers and investigate the contribution from residential burning during the study. Levoglucosan was correlated with AMS organic aerosol (R2 = 0.49) and with carbon monoxide (CO;R2 = 0.51) for all flights. Levoglucosan was not correlated with the inorganic smoke marker water‐soluble potassium but was correlated with the AMS markers ∆C2H4O2+(high resolution,R2 = 0.60) and ∆m/z60 (unit mass resolution,R2 = 0.61). However, at low levoglucosan, AMS markers deviated potentially due to interferences from other sources or differences with the species captured by the AMS markers. Analysis of levoglucosan changes relative to carbon monoxide as plumes advected from source regions showed no systematic levoglucosan loss for plumes up to 20 hr old. Based on literature residential burning source ratios and measured levoglucosan, contributions of organic carbon (OC) due to residential burning were estimated. The contribution ranged from ~30 to 100% of the OC, with significant variability depending on the source ratio used; however, the results show that biomass burning was a significant PM1OC source across the entire sampling region. A GEOS‐Chem model simulation predicted significantly less smoke contribution.

     
    more » « less
  2. Abstract. Extensive airborne measurements of non-methane organic gases (NMOGs), methane, nitrogen oxides, reduced nitrogen species, and aerosol emissions from US wild and prescribed fires were conducted during the 2019 NOAA/NASA Fire Influence on Regional to Global Environments and Air Quality campaign (FIREX-AQ). Here, we report the atmospheric enhancement ratios (ERs) and inferred emission factors (EFs) for compounds measured on board the NASA DC-8 research aircraft for nine wildfires and one prescribed fire, which encompass a range of vegetation types. We use photochemical proxies to identify young smoke and reduce the effects of chemical degradation on our emissions calculations. ERs and EFs calculated from FIREX-AQ observations agree within a factor of 2, with values reported from previous laboratory and field studies for more than 80 % of the carbon- and nitrogen-containing species. Wildfire emissions are parameterized based on correlations of the sum of NMOGs with reactive nitrogen oxides (NOy) to modified combustion efficiency (MCE) as well as other chemical signatures indicative of flaming/smoldering combustion, including carbon monoxide (CO), nitrogen dioxide (NO2), and black carbon aerosol. The sum of primary NMOG EFs correlates to MCE with an R2 of 0.68 and a slope of −296 ± 51 g kg−1, consistent with previous studies. The sum of the NMOG mixing ratios correlates well with CO with an R2 of 0.98 and a slope of 137 ± 4 ppbv of NMOGs per parts per million by volume (ppmv) of CO, demonstrating that primary NMOG emissions can be estimated from CO. Individual nitrogen-containing species correlate better with NO2, NOy, and black carbon than with CO. More than half of the NOy in fresh plumes is NO2 with an R2 of 0.95 and a ratio of NO2 to NOy of 0.55 ± 0.05 ppbv ppbv−1, highlighting that fast photochemistry had already occurred in the sampled fire plumes. The ratio of NOy to the sum of NMOGs follows trends observed in laboratory experiments and increases exponentially with MCE, due to increased emission of key nitrogen species and reduced emission of NMOGs at higher MCE during flaming combustion. These parameterizations will provide more accurate boundary conditions for modeling and satellite studies of fire plume chemistry and evolution to predict the downwind formation of secondary pollutants, including ozone and secondary organic aerosol.

     
    more » « less
  3. Abstract

    We present emission measurements of volatile organic compounds (VOCs) for western U.S. wildland fires made on the NSF/NCAR C‐130 research aircraft during the Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorption, and Nitrogen (WE‐CAN) field campaign in summer 2018. VOCs were measured with complementary instruments onboard the C‐130, including a proton‐transfer‐reaction time‐of‐flight mass spectrometer (PTR‐ToF‐MS) and two gas chromatography (GC)‐based methods. Agreement within combined instrument uncertainties (<60%) was observed for most co‐measured VOCs. GC‐based measurements speciated the isomeric contributions to selected PTR‐ToF‐MS ion masses and generally showed little fire‐to‐fire variation. We report emission ratios (ERs) and emission factors (EFs) for 161 VOCs measured in 31 near‐fire smoke plume transects of 24 specific individual fires sampled in the afternoon when burning conditions are typically most active. Modified combustion efficiency (MCE) ranged from 0.85 to 0.94. The measured campaign‐average total VOC EF was 26.1 ± 6.9 g kg−1, approximately 67% of which is accounted for by oxygenated VOCs. The 10 most abundantly emitted species contributed more than half of the total measured VOC mass. We found that MCE alone explained nearly 70% of the observed variance for total measured VOC emissions (r2 = 0.67) and >50% for 57 individual VOC EFs representing more than half the organic carbon mass. Finally, we found little fire‐to‐fire variability for the mass fraction contributions of individual species to the total measured VOC emissions, suggesting that a single speciation profile can describe VOC emissions for the wildfires in coniferous ecosystems sampled during WE‐CAN.

     
    more » « less
  4. In 2019/2020, Australia experienced its largest wildfire season on record. Smoke covered hundreds of square kilometers across the southeastern coast and reached the site of the 2020 COALA (Characterizing Organics and Aerosol Loading over Australia) field campaign in New South Wales. Using a subset of nighttime observations made by a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS), we calculate emission ratios (ERs) and factors (EFs) for 21 volatile organic compounds (VOCs). We restrict our analysis to VOCs with sufficiently high lifetimes to be minimally impacted by oxidation over the ~8 h between when the smoke was emitted and when it arrived at the field site. We use oxidized VOC to VOC ratios to assess the total amount of radical oxidation: maleic anhydride/furan to assess OH oxidation, and (cis-2-butenediol + furanone)/furan to assess NO3 oxidation. We compare ERs calculated from the freshest portion of the plume to ERs calculated using the entire nighttime period. Finding good agreement between the two, we are able to extend our analysis to VOCs measured in more chemically aged portions of the plume. Our analysis provides ERs and EFs for 9 compounds not previously reported for temperate forests in Australia: acrolein, pentanones/methylbutanal, methyl propanoate, methyl methacrylate, propene, maleic anhydride, benzaldehyde, methyl guaiacol, and methylbenzoic acid. We compare our results with two studies in similar Australian biomes, and two studies focused on US temperate forests. We find mixed agreement for EFs presented from previous studies of Australian wildfires, and generally good agreement with studies focused on fires in the Western US. This suggests that comprehensive field measurements of biomass burning VOC emissions in other regions may be applicable to Australian temperate forests. 
    more » « less
  5. Abstract. We characterize the aerosol physical and optical properties of 13 transported biomass burning (BB) events. BB events included long-rangeinfluence from fires in Alaskan and Siberian boreal forests transported to Mt. Bachelor Observatory (MBO) in the free troposphere (FT) over 8–14+ d and regional wildfires in northern California and southwestern Oregon transported to MBO in the boundary layer (BL) over 10 h to 3 d. Intensive aerosol optical properties and normalized enhancement ratios for BB events were derived from measured aerosol light scattering coefficients (σscat), aerosol light-absorbing coefficients (σabs), fine particulate matter (PM1), and carbon monoxide (CO) measurements made from July to September 2019, with particle size distribution collected from August to September. The observations showed that the Siberian BB events had a lower scattering Ångström exponent (SAE), a higher mass scattering efficiency (MSE; Δσscat/ΔPM1), and a bimodal aerosol size distribution with a higher geometric mean diameter (Dg). We hypothesize that the larger particles and associated scatteringproperties were due to the transport of fine dust alongside smoke in addition to contributions from condensation of secondary aerosol, coagulation of smaller particles, and aqueous-phase processing duringtransport. Alaskan and Siberian boreal forest BB plumes were transported long distances in the FT and characterized by lower absorptionÅngström exponent (AAE) values indicative of black carbon (BC)dominance in the radiative budget. Significantly elevated AAE values wereonly observed for BB events with <1 d transport, which suggests strong production of brown carbon (BrC) in these plumes but limited radiative forcing impacts outside of the immediate region.

     
    more » « less