skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Global Groundwater Modeling and Monitoring: Opportunities and Challenges
Abstract Groundwater is by far the largest unfrozen freshwater resource on the planet. It plays a critical role as the bottom of the hydrologic cycle, redistributing water in the subsurface and supporting plants and surface water bodies. However, groundwater has historically been excluded or greatly simplified in global models. In recent years, there has been an international push to develop global scale groundwater modeling and analysis. This progress has provided some critical first steps. Still, much additional work will be needed to achieve a consistent global groundwater framework that interacts seamlessly with observational datasets and other earth system and global circulation models. Here we outline a vision for a global groundwater platform for groundwater monitoring and prediction and identify the key technological and data challenges that are currently limiting progress. Any global platform of this type must be interdisciplinary and cannot be achieved by the groundwater modeling community in isolation. Therefore, we also provide a high‐level overview of the groundwater system, approaches to groundwater modeling and the current state of global groundwater representations, such that readers of all backgrounds can engage in this challenge.  more » « less
Award ID(s):
1945195
PAR ID:
10371122
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
57
Issue:
12
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Groundwater is a vital ecosystem of the global water cycle, hosting unique biodiversity and providing essential services to societies. Despite being the largest unfrozen freshwater resource, in a period of depletion by extraction and pollution, groundwater environments have been repeatedly overlooked in global biodiversity conservation agendas. Disregarding the importance of groundwater as an ecosystem ignores its critical role in preserving surface biomes. To foster timely global conservation of groundwater, we propose elevating the concept of keystone species into the realm of ecosystems, claiming groundwater as a keystone ecosystem that influences the integrity of many dependent ecosystems. Our global analysis shows that over half of land surface areas (52.6%) has a medium‐to‐high interaction with groundwater, reaching up to 74.9% when deserts and high mountains are excluded. We postulate that the intrinsic transboundary features of groundwater are critical for shifting perspectives towards more holistic approaches in aquatic ecology and beyond. Furthermore, we propose eight key themes to develop a science‐policy integrated groundwater conservation agenda. Given ecosystems above and below the ground intersect at many levels, considering groundwater as an essential component of planetary health is pivotal to reduce biodiversity loss and buffer against climate change. 
    more » « less
  2. Groundwater depletion threatens global freshwater resources, necessitating urgent water management and policies to meet current and future needs. However, existing data-intensive approaches to assessments do not fully account for the complex human, climate, and water interactions within transboundary groundwater systems. Here, we present the design of and findings from a pilot participatory modeling workshop aiming to advance understanding of the hydrologic–human–climate feedback loops underpinning groundwater systems. Using participatory modeling tools and methods from the system dynamics tradition, we captured the mental models of researchers from water, social, data, and systems sciences. A total of 54 feedback loops were identified, demonstrating the potential of this methodology to adequately capture the complexity of groundwater systems. Based on the workshop outcomes, as an illustrative example, we discuss the value of participatory system modeling as a conceptualization tool, bridging perspectives across disciplinary silos. We further discuss how outcomes may inform future research on existing knowledge gaps around groundwater issues, and in doing so, advance interdisciplinary, use-inspired research for water decision-making more broadly. 
    more » « less
  3. Abstract Groundwater is one of the largest reservoirs of water on Earth but has relatively small fluxes compared to its volume. This behavior is exaggerated at depths below 500 m, where the majority of groundwater exists and where residence times of millions to even a billion years have been documented. However, the extent of interactions between deep groundwater (>500 m) and the rest of the terrestrial water cycle at a global scale are unclear because of challenges in detecting their contributions to streamflow. Here, we use a chloride mass balance approach to quantify the contribution of deep groundwater to global streamflow. Deep groundwater likely contributes <0.1% to global streamflow and is only weakly and sporadically connected to the rest of the water cycle on geological timescales. Despite this weak connection to streamflow, we found that deep groundwaters are important to the global chloride cycle, providing ~7% of the flux of chloride to the ocean. 
    more » « less
  4. Abstract Water scholarship has advanced considerably in recent decades. Despite this remarkable progress, water challenges may be growing more quickly than our capacity to solve them. While much progress has been made toward achieving Sustainable Development Goal 6 — water and sanitation for all — new stressors have emerged to threaten this progress. Far from being a problem of the Global South, recent research shows that water insecurity is very much a global phenomenon — and one that has been, until recently, seriously neglected in the Global North. This indicates a strong need for innovative measurement of who experiences water insecurity, new approaches for monitoring the efficacy of water interventions, and more effective management of complex, mobile, and multiple water infrastructures to achieve water security. In this paper, we introduce the Household Water Insecurity approach to addressing these concerns. First, we suggest ways to improve the measurement of water insecurity — pinpointing problems at the household and individual levels — in ways that can inform policymaking with improved precision. Second, we discuss ways that new information and communication technology can improve monitoring and indicate where water infrastructure repairs and investments are most needed. Third, we highlight the need for new approaches to managing complex water infrastructures in more inclusive and democratic ways. 
    more » « less
  5. Abstract The creation of fractures in bedrock dictates water movement through the critical zone, controlling weathering, vadose zone water storage, and groundwater recharge. However, quantifying connections between fracturing, water flow, and chemical weathering remains challenging because of limited access to the deep critical zone. Here we overcome this challenge by coupling measurements from borehole drilling, groundwater monitoring, and seismic refraction surveys in the central California Coast Range. Our results show that the subsurface is highly fractured, which may be driven by the regional geologic and tectonic setting. The pervasively fractured rock facilitates infiltration of meteoric water down to a water table that aligns with oxidation in exhumed rock cores and is coincident with the adjacent intermittent first‐order stream channel. This work highlights the need to incorporate deep water flow and weathering due to pervasive fracturing into models of catchment water balances and critical zone weathering, especially in tectonically active landscapes. 
    more » « less