skip to main content


Title: Rudorffites and Beyond: Perovskite‐Inspired Silver/Copper Pnictohalides for Next‐Generation Environmentally Friendly Photovoltaics and Optoelectronics
Abstract

In the wake of lead‐halide perovskite research, bismuth‐ and antimony‐based perovskite‐inspired semiconducting materials are attracting increasing attention as safer and potentially more robust alternatives to lead‐based archetypes. Of particular interest are the group IB–group VA halide compositions with a generic formula AxByXx+3y(A+ = Cu+/Ag+; B3+ = Bi3+/Sb3+; X = I/Br), i.e., silver/copper pnictohalides and derivatives thereof. This family of materials forms 3D structures with much higher solar cell efficiencies and greater potential for indoor photovoltaics than the lower‐dimensional bismuth/antimony‐based perovskite‐inspired semiconductors. Furthermore, silver/copper pnictohalides are being investigated for applications beyond photovoltaics, e.g., for photodetection, ionization radiation detection, memristors, and chemical sensors. Such versatility parallels the wide range of possible compositions and synthetic routes, which enable various structural, morphological, and optoelectronic properties. This manuscript surveys the growing research on silver/copper pnictohalides, highlighting their composition–structure–property relationships and the status and prospects of the photovoltaic and optoelectronic devices based thereon. The authors hope that the insights provided herein might accelerate the development of eco‐friendly and stable perovskite‐inspired materials for next‐generation photovoltaics and optoelectronics.

 
more » « less
Award ID(s):
2127473
NSF-PAR ID:
10371127
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
32
Issue:
36
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1.  
    more » « less
  2. Abstract

    Organometal halide perovskites have powerful intrinsic potential to drive next‐generation solar technology, but their insufficient thermomechanical reliability and unproven large‐area manufacturability limit competition with incumbent silicon photovoltaics. This work addresses these limitations by leveraging large‐area processing and robust inorganic hole transport layers (HTLs). Inverted perovskite solar cells utilizing NiOxHTLs deposited by rapid aqueous spray‐coating that outperform spin‐coated NiOxand lead to a 5× improvement in the fracture energy (Gc), a primary metric of thermomechanical stability, are presented. The morphology, chemical composition, and optoelectronic properties of the NiOxfilms are characterized to understand and optimize compatibility with an archetypal double cation perovskite, Cs.17FA.83Pb(Br.17I.83)3. Perovskite solar cells with sprayed NiOxshow higher photovoltaic performance, exhibiting up to 82% fill factor and 17.7% power conversion efficiency (PCE)—the highest PCE reported for inverted cell with scalable charge transport layers—as well as excellent stability under full illumination and after 4000 h aging in inert conditions at room temperature. By utilizing open‐air techniques and aqueous precursors, this combination of robust materials and low‐cost processing provides a platform for scaling perovskite modules with long‐term reliability.

     
    more » « less
  3. Abstract

    Perovskite oxides (ternary chemical formula ABO3) are a diverse class of materials with applications including heterogeneous catalysis, solid-oxide fuel cells, thermochemical conversion, and oxygen transport membranes. However, their multicomponent (chemical formula$${A}_{x}{A}_{1-x}^{\text{'}}{B}_{y}{B}_{1-y}^{\text{'}}{O}_{3}$$AxA1x'ByB1y'O3) chemical space is underexplored due to the immense number of possible compositions. To expand the number of computed$${A}_{x}{A}_{1-x}^{{\prime} }{B}_{y}{B}_{1-y}^{{\prime} }{O}_{3}$$AxA1xByB1yO3compounds we report a dataset of 66,516 theoretical multinary oxides, 59,708 of which are perovskites. First, 69,407$${A}_{0.5}{A}_{0.5}^{{\prime} }{B}_{0.5}{B}_{0.5}^{{\prime} }{O}_{3}$$A0.5A0.5B0.5B0.5O3compositions were generated in theab+aGlazer tilting mode using the computationally-inexpensive Structure Prediction and Diagnostic Software (SPuDS) program. Next, we optimized these structures with density functional theory (DFT) using parameters compatible with the Materials Project (MP) database. Our dataset contains these optimized structures and their formation (ΔHf) and decomposition enthalpies (ΔHd) computed relative to MP tabulated elemental references and competing phases, respectively. This dataset can be mined, used to train machine learning models, and rapidly and systematically expanded by optimizing more SPuDS-generated$${A}_{0.5}{A}_{0.5}^{{\prime} }{B}_{0.5}{B}_{0.5}^{{\prime} }{O}_{3}$$A0.5A0.5B0.5B0.5O3perovskite structures using MP-compatible DFT calculations.

     
    more » « less
  4. One of the organic components in the perovskite photo-absorber, the methylammonium cation, has been suggested to be a roadblock to the long-term operation of organic–inorganic hybrid perovskite-based solar cells. In this work we systematically explore the crystallographic and optical properties of the compositional space of mixed cation and mixed halide lead perovskites, where formamidinium (FA + ) is gradually replaced by cesium (Cs + ), and iodide (I − ) is substituted by bromide (Br − ), i.e. , Cs y FA 1− y Pb(Br x I 1− x ) 3 . Higher tolerance factors lead to more cubic structures, whereas lower tolerance factors lead to more orthorhombic structures. We find that while some correlation exists between the tolerance factor and structure, the tolerance factor does not provide a holistic understanding of whether or not a perovskite structure will fully form. By screening 26 solar cells with different compositions, our results show that Cs 1/6 FA 5/6 PbI 3 delivers the highest efficiency and long-term stability among the I-rich compositions. This work sheds light on the fundamental structure–property relationships in the Cs y FA 1− y Pb(Br x I 1− x ) 3 compositional space, providing vital insight to the design of durable perovskite materials. Our approach provides a library of structural and optoelectronic information for this compositional space. 
    more » « less
  5. Abstract

    X‐ray microscopy can provide unique chemical, electronic, and structural insights into perovskite materials and devices leveraging bright, tunable synchrotron X‐ray sources. Over the last decade, fundamental understanding of halide perovskites and their impressive performance in optoelectronic devices has been furthered by rigorous research regarding their structural and chemical properties. Herein, studies of perovskites are reviewed that have used X‐ray imaging, spectroscopy, and scattering microscopies that have proven valuable tools toward understanding the role of defects, impurities, and processing on perovskite material properties and device performance. Together these microscopic investigations have augmented the understanding of the internal workings of perovskites and have helped to steer the perovskite community toward promising directions. In many ways, X‐ray microscopy of perovskites is still in its infancy, which leaves many exciting paths unexplored including new ptychographic, multimodal, in situ, and operando experiments. To explore possibilities, pioneering X‐ray microscopy along these lines is briefly highlighted from other semiconductor systems including silicon, CdTe, GaAs, CuInxGa1−xSe2, and organic photovoltaics. An overview is provided on the progress made in utilizing X‐ray microscopy for perovskites and present opportunities and challenges for future work.

     
    more » « less