skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Glucocorticoids coordinate changes in gut microbiome composition in wild North American red squirrels
Abstract The gut microbiome impacts host health and fitness, in part through the diversification of gut metabolic function and pathogen protection. Elevations in glucocorticoids (GCs) appear to reduce gut microbiome diversity in experimental studies, suggesting that a loss of microbial diversity may be a negative consequence of increased GCs. However, given that ecological factors like food availability and population density may independently influence both GCs and microbial diversity, understanding how these factors structure the GC-microbiome relationship is crucial to interpreting its significance in wild populations. Here, we used an ecological framework to investigate the relationship between GCs and gut microbiome diversity in wild North American red squirrels (Tamiasciurus hudsonicus). As expected, higher GCs predicted lower gut microbiome diversity and an increase in metabolic taxa. Surprisingly, but in line with prior empirical studies on wild animals, gastrointestinal pathogens decreased as GCs increased. Both dietary heterogeneity and an upcoming food pulse exhibited direct effects on gut microbiome diversity, whereas conspecific density and reproductive activity impacted diversity indirectly via changes in host GCs. Our results provide evidence of a gut–brain axis in wild red squirrels and highlight the importance of situating the GC-gut microbiome relationship within an ecological framework.  more » « less
Award ID(s):
1749627 2010726
PAR ID:
10371233
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
12
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Long‐term studies of wild animals provide the opportunity to investigate how phenotypic plasticity is used to cope with environmental fluctuations and how the relationships between phenotypes and fitness can be dependent upon the ecological context.Many previous studies have only investigated life‐history plasticity in response to changes in temperature, yet wild animals often experience multiple environmental fluctuations simultaneously. This requires field experiments to decouple which ecological factor induces plasticity in fitness‐relevant traits to better understand their population‐level responses to those environmental fluctuations.For the past 32 years, we have conducted a long‐term integrative study of individually marked North American red squirrelsTamiasciurus hudsonicusErxleben in the Yukon, Canada. We have used multi‐year field experiments to examine the physiological and life‐history responses of individual red squirrels to fluctuations in food abundance and conspecific density.Our long‐term observational study and field experiments show that squirrels can anticipate increases in food availability and density, thereby decoupling the usual pattern where animals respond to, rather than anticipate, an ecological change.As in many other study systems, ecological factors that can induce plasticity (such as food and density) covary. However, our field experiments that manipulate food availability and social cues of density (frequency of territorial vocalizations) indicate that increases in social (acoustic) cues of density in the absence of additional food can induce similar life‐history plasticity, as does experimental food supplementation.Changes in the levels of metabolic hormones (glucocorticoids) in response to variation in food and density are one mechanism that seems to induce this adaptive life‐history plasticity.Although we have not yet investigated the energetic response of squirrels to elevated density or its association with life‐history plasticity, energetics research in red squirrels has overturned several standard pillars of knowledge in physiological ecology.We show how a tractable model species combined with integrative studies can reveal how animals cope with resource fluctuations through life‐history plasticity. 
    more » « less
  2. Suen, Garret (Ed.)
    ABSTRACT The gut microbiome is a symbiotic microbial community associated with the host and plays multiple important roles in host physiology, nutrition, and health. A number of factors have been shown to influence the gut microbiome, among which diet is considered to be one of the most important; however, the relationship between diet composition and gut microbiota in wild mammals is still not well recognized. Herein, we characterized the gut microbiota of bats and examined the effects of diet, host taxa, body size, gender, elevation, and latitude on the gut microbiota. The cytochrome C oxidase subunit I (COI) gene and 16S rRNA gene amplicons were sequenced from the feces of eight insectivorous bat species in southern China, includingMiniopterus fuliginosus,Aselliscus stoliczkanus,Myotis laniger,Rhinolophus episcopus,Rhinolophus osgoodi,Rhinolophus ferrumequinum,Rhinolophus affinis,andRhinolophus pusillus. The results showed that the composition of gut microbiome and diet exhibited significant differences among bat species. Diet composition and gut microbiota were significantly correlated at the order, family, genus, and operational taxonomic unit levels, while certain insects had a marked effect on the gut microbiome at specific taxonomic levels. In addition, elevation, latitude, body weight of bats, and host species had significant effects on the gut microbiome, but phylosymbiosis between host phylogeny and gut microbiome was lacking. These findings clarify the relationship between gut microbiome and diet and contribute to improving our understanding of host ecology and the evolution of the gut microbiome in wild mammals. IMPORTANCEThe gut microbiome is critical for the adaptation of wildlife to the dynamic environment. Bats are the second-largest group of mammals with short intestinal tract, yet their gut microbiome is still poorly studied. Herein, we explored the relationships between gut microbiome and food composition, host taxa, body size, gender, elevation, and latitude. We found a significant association between diet composition and gut microbiome in insectivorous bats, with certain insect species having major impacts on gut microbiome. Factors like species taxa, body weight, elevation, and latitude also affected the gut microbiome, but we failed to detect phylosymbiosis between the host phylogeny and the gut microbiome. Overall, our study presents novel insights into how multiple factors shape the bat’s gut microbiome together and provides a study case on host-microbe interactions in wildlife. 
    more » « less
  3. null (Ed.)
    Abstract Background Adaptive shifts in gut microbiome composition are one route by which animals adapt to seasonal changes in food availability and diet. However, outside of dietary shifts, other potential environmental drivers of gut microbial composition have rarely been investigated, particularly in organisms living in their natural environments. Results Here, we generated the largest wild nonhuman primate gut microbiome dataset to date to identify the environmental drivers of gut microbial diversity and function in 758 samples collected from wild Ethiopian geladas ( Theropithecus gelada ). Because geladas live in a cold, high-altitude environment and have a low-quality grass-based diet, they face extreme thermoregulatory and energetic constraints. We tested how proxies of food availability (rainfall) and thermoregulatory stress (temperature) predicted gut microbiome composition of geladas. The gelada gut microbiome composition covaried with rainfall and temperature in a pattern that suggests distinct responses to dietary and thermoregulatory challenges. Microbial changes were driven by differences in the main components of the diet across seasons: in rainier periods, the gut was dominated by cellulolytic/fermentative bacteria that specialized in digesting grass, while during dry periods the gut was dominated by bacteria that break down starches found in underground plant parts. Temperature had a comparatively smaller, but detectable, effect on the gut microbiome. During cold and dry periods, bacterial genes involved in energy, amino acid, and lipid metabolism increased, suggesting a stimulation of fermentation activity in the gut when thermoregulatory and nutritional stress co-occurred, and potentially helping geladas to maintain energy balance during challenging periods. Conclusion Together, these results shed light on the extent to which gut microbiota plasticity provides dietary and metabolic flexibility to the host, and might be a key factor to thriving in changing environments. On a longer evolutionary timescale, such metabolic flexibility provided by the gut microbiome may have also allowed members of Theropithecus to adopt a specialized diet, and colonize new high-altitude grassland habitats in East Africa. 
    more » « less
  4. The Human Microbiome Project was a research programme that successfully identified associations between microbial species and healthy or diseased individuals. However, a major challenge identified was the absence of model systems for studying host–microbiome interactions, which would increase our capacity to uncover molecular interactions, understand organ-specificity and discover new microbiome-altering health interventions.Caenorhabditis eleganshas been a pioneering model organism for over 70 years but was largely studied in the absence of a microbiome. Recently, ecological sampling of wild nematodes has uncovered a large amount of natural genetic diversity as well as a slew of associated microbiota. The field has now explored the interactions ofC. eleganswith its associated gut microbiome, a defined and non-random microbial community, highlighting its suitability for dissecting host–microbiome interactions. This core microbiome is being used to study the impact of host genetics, age and stressors on microbiome composition. Furthermore, single microbiome species are being used to dissect molecular interactions between microbes and the animal gut. Being amenable to health altering genetic and non-genetic interventions,C. eleganshas emerged as a promising system to generate and test new hypotheses regarding host–microbiome interactions, with the potential to uncover novel paradigms relevant to other systems. This article is part of the theme issue ‘Sculpting the microbiome: how host factors determine and respond to microbial colonization’. 
    more » « less
  5. Abstract Research on animal microbiomes is increasingly aimed at determining the evolutionary and ecological factors that govern host–microbiome dynamics, which are invariably intertwined and potentially synergistic. We present three empirical studies related to this topic, each of which relies on the diversity of Malagasy lemurs (representing a total of 19 species) and the comparative approach applied across scales of analysis. In Study 1, we compare gut microbial membership across 14 species in the wild to test the relative importance of host phylogeny and feeding strategy in mediating microbiome structure. Whereas host phylogeny strongly predicted community composition, the same feeding strategies shared by distant relatives did not produce convergent microbial consortia, but rather shaped microbiomes in host lineage‐specific ways, particularly in folivores. In Study 2, we compare 14 species of wild and captive folivores, frugivores, and omnivores, to highlight the importance of captive populations for advancing gut microbiome research. We show that the perturbational effect of captivity is mediated by host feeding strategy and can be mitigated, in part, by modified animal management. In Study 3, we examine various scent‐gland microbiomes across three species in the wild or captivity and show them to vary by host species, sex, body site, and a proxy of social status. These rare data provide support for the bacterial fermentation hypothesis in olfactory signal production and implicate steroid hormones as mediators of microbial community structure. We conclude by discussing the role of scale in comparative microbial studies, the links between feeding strategy and host–microbiome coadaptation, the underappreciated benefits of captive populations for advancing conservation research, and the need to consider the entirety of an animal's microbiota. Ultimately, these studies will help move the field from exploratory to hypothesis‐driven research. 
    more » « less