Abstract Due to its inbuilt ability to release biocompatible materials encapsulating living cells in a predefined location, 3D bioprinting is a promising technique for regenerating patient-specific tissues and organs. Among various 3D bioprinting techniques, extrusion-based 3D bio-printing ensures a higher percentage of cell release, ensuring suitable external and internal scaffold architectures. Scaffold architecture is mainly defined by filament geometry and width. A systematic selection of a set of process parameters, such as nozzle diameter, print speed, print distance, extrusion pressure, and material viscosity, can control the filament geometry and width, eventually confirming the user-defined scaffold porosity. For example, carefully selecting two sets of process parameters can result in a similar filament width. However, the lack of availability of sufficient analytical relations between printing process parameters and filament width creates a barrier to achieving defined scaffold architectures with available resources. In this paper, filament width was determined using an image processing technique and an analytical relationship was developed, including various process parameters to maintain defined filament width variation for different hydrogels within an acceptable range to confirm the overall geometric fidelity of the scaffold. Proposed analytical relations can help achieve defined scaffold architectures with available resources.
more »
« less
Self‐Regulative Direct Ink Writing of Frontally Polymerizing Thermoset Polymers
Abstract The ability to manufacture highly intricate designs is one of the key advantages of 3D printing. Achieving high dimensional accuracy requires precise, often time‐consuming calibration of the process parameters. Computerized feedback control systems for 3D printing enable sensing and real‐time adaptation and optimization of these parameters at every stage of the print, but multiple challenges remain with sensor embedment and measurement accuracy. In contrast to these active control approaches, here, the authors harness frontal polymerization (FP) to rapidly cure extruded filament in tandem with the printing process. A temperature gradient present along the filament, which is dependent on the printing parameters, can impose control over this exothermic reaction. Experiments and theory reveal a self‐regulative mechanism between filament temperature and cure kinetics that allows the frontal cure speed to autonomously match the print speed. This self‐regulative printing process rapidly adapts to changes in print speed and environmental conditions to produce complex, high‐fidelity structures and freestanding architectures spanning up to 100 mm, greatly expanding the capabilities of direct ink writing (DIW).
more »
« less
- Award ID(s):
- 1933932
- PAR ID:
- 10371240
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials Technologies
- Volume:
- 7
- Issue:
- 9
- ISSN:
- 2365-709X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract 3D printing is a popular fabrication technique because of its ability to produce complex architectures. Melt‐based 3D printing is widely used for thermoplastic polymers like poly(caprolactone) (PCL), poly(lactic acid) (PLA), and poly(lactic‐co‐glycolic acid) (PLGA) because of their low processing temperatures. However, traditional melt‐based techniques require processing temperatures and pressures high enough to achieve continuous flow, limiting the type of polymer that can be printed. Solvent‐cast printing (SCP) offers an alternative approach to print a wider range of polymers. Polymers are dissolved in a volatile solvent that evaporates during deposition to produce a solid polymer filament. SCP, therefore, requires optimizing polymer concentration in the ink, print pressure, and print speed to achieve desired print fidelity. Here, capillary flow analysis shows how print pressure affects the process‐apparent viscosity of PCL, PLA, and PLGA inks. Ink viscosity is also measured using rheology, which is used to link a specific ink viscosity to a predicted set of print pressure and print speed for all three polymers. These results demonstrate how this approach can be used to accelerate optimization by significantly reducing the number of parameter combinations. This strategy can be applied to other polymers to expand the library of polymers printable with SCP.more » « less
-
Abstract Laser powder bed fusion (LPBF) is a 3D printing technology that can print metal parts with complex geometries without the design constraints of traditional manufacturing routes. However, the parts printed by LPBF normally contain many more pores than those made by conventional methods, which severely deteriorates their properties. Here, by combining in-situ high-speed high-resolution synchrotron x-ray imaging experiments and multi-physics modeling, we unveil the dynamics and mechanisms of pore motion and elimination in the LPBF process. We find that the high thermocapillary force, induced by the high temperature gradient in the laser interaction region, can rapidly eliminate pores from the melt pool during the LPBF process. The thermocapillary force driven pore elimination mechanism revealed here may guide the development of 3D printing approaches to achieve pore-free 3D printing of metals.more » « less
-
Abstract Liquid metal (LM) elastomer composites offer promising potential in soft robotics, wearable electronics, and human‐machine interfaces. Direct ink write (DIW) 3D printing offers a versatile manufacturing technique capable of precise control over LM microstructures, yet challenges such as interfilament void formation in multilayer structures impact material performance. Here, a DIW strategy is introduced to control both LM microstructure and material architecture. Investigating three key process parameters–nozzle height, extrusion rate, and nondimensionalized nozzle velocity–it is found that nozzle height and velocity predominantly influence filament geometry. The nozzle height primarily dictates the aspect ratio of the filament and the formation of voids. A threshold print height based on filament geometry is identified; below the height, significant surface roughness occurs, and above the ink fractures, which facilitates the creation of porous structures with tunable stiffness and programmable LM microstructure. These porous architectures exhibit reduced density and enhanced thermal conductivity compared to cast samples. When used as a dielectric in a soft capacitive sensor, they display high sensitivity (gauge factor = 9.0), as permittivity increases with compressive strain. These results demonstrate the capability to simultaneously manipulate LM microstructure and geometric architecture in LM elastomer composites through precise control of print parameters, while maintaining geometric fidelity in the printed design.more » « less
-
Abstract 3D printing of optics has gained significant attention in optical industry, but most of the research has been focused on organic polymers. In spite of recent progress in 3D printing glass, 3D printing of precision glass optics for imaging applications still faces challenges from shrinkage during printing and thermal processing, and from inadequate surface shape and quality to meet the requirements for imaging applications. This paper reports a new liquid silica resin (LSR) with higher curing speed, better mechanical properties, lower sintering temperature, and reduced shrinkage, as well as the printing process for high‐precision glass optics for imaging applications. It is demonstrated that the proposed material and printing process can print almost all types of optical surfaces, including flat, spherical, aspherical, freeform, and discontinuous surfaces, with accurate surface shape and high surface quality for imaging applications. It is also demonstrated that the proposed method can print complex optical systems with multiple optical elements, completely removing the time‐consuming and error‐prone alignment process. Most importantly, the proposed printing method is able to print optical systems with active moving elements, significantly improving system flexibility and functionality. The printing method will enable the much‐needed transformational manufacturing of complex freeform glass optics that are currently inaccessible with conventional processes.more » « less
An official website of the United States government
