skip to main content


Search for: All records

Award ID contains: 1933932

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The ability to manufacture highly intricate designs is one of the key advantages of 3D printing. Achieving high dimensional accuracy requires precise, often time‐consuming calibration of the process parameters. Computerized feedback control systems for 3D printing enable sensing and real‐time adaptation and optimization of these parameters at every stage of the print, but multiple challenges remain with sensor embedment and measurement accuracy. In contrast to these active control approaches, here, the authors harness frontal polymerization (FP) to rapidly cure extruded filament in tandem with the printing process. A temperature gradient present along the filament, which is dependent on the printing parameters, can impose control over this exothermic reaction. Experiments and theory reveal a self‐regulative mechanism between filament temperature and cure kinetics that allows the frontal cure speed to autonomously match the print speed. This self‐regulative printing process rapidly adapts to changes in print speed and environmental conditions to produce complex, high‐fidelity structures and freestanding architectures spanning up to 100 mm, greatly expanding the capabilities of direct ink writing (DIW).

     
    more » « less
  2. Abstract

    The properties of foams, an important class of cellular solids, are most sensitive to the volume fraction and openness of its elementary compartments; size, shape, orientation, and the interconnectedness of the cells are other important design attributes. Control of these morphological traits would allow the tailored fabrication of useful materials. While approaches like ice templating have produced foams with elongated cells, there is a need for rapid, versatile, and energy‐efficient methods that also control the local order and macroscopic alignment of cellular elements. Here, a fast and convenient method is described to obtain anisotropic structural foams using frontal polymerization. Foams are fabricated by curing mixtures of dicyclopentadiene and a blowing agent via frontal ring‐opening metathesis polymerization (FROMP). The materials are characterized using microcomputed tomography (micro‐CT) and an image analysis protocol to quantify the morphological characteristics. The cellular structure, porosity, and hardness of the foams change with blowing agent, concentration, and resin viscosity. Moreover, a full factorial combination of variables is used to correlate each parameter with the structure of the obtained foams. The results demonstrate the controlled production of foams with specific morphologies using the simple and efficient method of frontal polymerization.

     
    more » « less
  3. Abstract

    This note presents approximate analytical expressions for the velocity of the self‐propagating reaction front in the frontal polymerization of thermoset polymers and composites. Prior estimates available in the literature for the front velocity have been limited by their applicability to simple reaction kinetics. The improved estimates provided in this work are shown to be applicable to complex reaction kinetics encountered in the frontal polymerization of neat thermoset polymers or fiber‐reinforced polymer‐matrix composites with a wide range of polymer chemistries, including dicyclopentadiene, cyclooctadiene, acrylates, and epoxies. They are also shown to be applicable to wide range of values of the initial temperature and initial degree of cure of the resin, and of the volume fraction of the reinforcing phase.

     
    more » « less
  4. Abstract

    Frontal polymerization provides a rapid, economic, and environmentally friendly methodology to manufacture thermoset polymers and composites. Despite its efficiency and reduced environmental impact, the manufacturing method is underutilized due to the limited fundamental understanding of its dynamic control. This work reports the control and patterning of the front propagation in a dicyclopentadiene resin by immersion of phase‐changing polycaprolactone particles. Predictive and designed patterning is enabled by multiphysical numerical analyses, which reveal that the interplay between endothermic phase transition, exothermic chemical reaction, and heat exchange govern the temperature, velocity, and propagation path of the front via two different interaction regimes. To pattern the front, one can vary the size and spacing between the particles and increase the number of propagating fronts, resulting in tunable physical patterns formed due to front separation and merging near the particles. Both single‐ and double‐frontal polymerization experiments in an open mold are performed. The results confirm the front–particle interaction mechanisms and the shapes of the patterns explored numerically. The present study offers a fundamental understanding of frontal polymerization in the presence of heat‐absorbing second‐phase materials and proposes a potential one‐step manufacturing method for precisely patterned polymeric and composite materials without masks, molds, or printers.

     
    more » « less