skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluation of fluorescence-based viability stains in cells dissociated from scleractinian coral Pocillopora damicornis
Abstract The application of established cell viability assays such as the commonly used trypan blue staining method to coral cells is not straightforward due to different culture parameters and different cellular features specific to mammalian cells compared to marine invertebrates. UsingPocillopora damicornisas a model, we characterized the autofluorescence and tested different fluorescent dye pair combinations to identify alternative viability indicators. The cytotoxicity of different representative molecules, namely small organic molecules, proteins and nanoparticles (NP), was measured after 24 h of exposure using the fluorescent dye pair Hoechst 33342 and SYTOX orange. Our results show that this dye pair can be distinctly measured in the presence of fluorescent proteins plus chlorophyll.P. damicorniscells exposed for 24 h to Triton-X100, insulin or titanium dioxide (TiO2) NPs, respectively, at concentrations ranging from 0.5 to 100 µg/mL, revealed a LC50 of 0.46 µg/mL for Triton-X100, 6.21 µg/mL for TiO2NPs and 33.9 µg/mL for insulin. This work presents the approach used to customize dye pairs for membrane integrity-based cell viability assays considering the species- and genotype-specific autofluorescence of scleractinian corals, namely: endogenous fluorescence characterization followed by the selection of dyes that do not overlap with endogenous signals.  more » « less
Award ID(s):
1940169 1939699
PAR ID:
10371251
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
12
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The development of innovative antimicrobial materials is crucial in thwarting infectious diseases caused by microbes, as drug-resistant pathogens are increasing in both number and capacity to detoxify the antimicrobial drugs used today. An ideal antimicrobial material should inhibit a wide variety of bacteria in a short period of time, be less or not toxic to normal cells, and the fabrication or synthesis process should be cheap and easy. We report a one-step microwave-assisted hydrothermal synthesis of mixed composite CuxFeyOz (Fe2O3/Cu2O/CuO/CuFe2O) nanoparticles (NPs) as an excellent antimicrobial material. The 1 mg/mL CuxFeyOz NPs with the composition 36% CuFeO2, 28% Cu2O and 36% Fe2O3 have a general antimicrobial activity greater than 5 log reduction within 4 h against nine important human pathogenic bacteria (including drug-resistant bacteria as well as Gram-positive and Gram-negative strains). For example, they induced a >9 log reduction in Escherichia coli B viability after 15 min of incubation, and an ~8 log reduction in multidrug-resistant Klebsiella pneumoniae after 4 h incubation. Cytotoxicity tests against mouse fibroblast cells showed about 74% viability when exposed to 1 mg/mL CuxFeyOz NPs for 24 h, compared to the 20% viability for 1 mg/mL pure Cu2O NPs synthesized by the same method. These results show that the CuxFeyOz composite NPs are a highly efficient, low-toxicity and cheap antimicrobial material that has promising potential for applications in medical and food safety. 
    more » « less
  2. null (Ed.)
    An emerging interest regarding nanoparticles (NPs) concerns their potential immunomodulatory and pro-inflammatory activities, as well as their impact in the circulatory system. These biological activities of NPs can be related to the intensity and type of the responses, which can raise concerns about adverse side effects and limit the biomedical applicability of these nanomaterials. Therefore, the purpose of this study was to investigate the impact of a library of cationic cellulose nanocrystals (CNCs) in the human blood and endothelial cells using cell-based assays. First, we evaluated whether the cationic CNCs would cause hemolysis and aggregation or alteration on the morphology of red blood cells (RBC). We observed that although these nanomaterials did not alter RBC morphology or cause aggregation, at 24 h exposure, a mild hemolysis was detected mainly with unmodified CNCs. Then, we analyzed the effect of various concentrations of CNCs on the cell viability of human umbilical vein endothelial cells (HUVECs) in a time-dependent manner. None of the cationic CNCs caused a dose-response decrease in the cell viability of HUVEC at 24 h or 48 h of exposure. The findings of this study, together with the immunomodulatory properties of these cationic CNCs previously published, support the development of engineered cationic CNCs for biomedical applications, in particular as vaccine nanoadjuvants. 
    more » « less
  3. Nanoparticle-based imaging agents have gained massive attention for the targeted imaging of early-stage cancer. Among these, organic dye-entrapped/assembled nanoparticles have been recognized as potential imaging agents. However, they are limited by poor brightness, low stability, low reproducibil-ity and scalability, and selective surface engineering, which limits their translational potential. The mo-lecular assembly of amphiphilic precursor molecules and the chosen fluorophore can augment the brightness and stability of engineered nanoimaging agents. Herein, we describe an original engineering method for cancer cell membrane-covered ICG-cellulose acetate nanospheres (180 nm) as biomimetic ultra-bright nanoimaging agents for cancer cell imaging. The targeted cancer cell imaging is compared with folic acid-attached ICG-cellulose acetate nanospheres. Encapsulation of fluorescent organic mole-cules (660 dye molecules/ per nanoparticle) in the core of a polymeric network enhances the overall brightness and long-term photostability due to the entrapment of the loaded fluorescent cargo and poor permeation of oxygen to oxidize the dye. The amphiphilic nature of the selected polymeric network accommodates both hydrophilic and hydrophobic cargo molecules (e.g., imaging and therapeutics). The engineered fluorescent nanoparticles exhibited high brightness (780-980 MESF), uniform particle size distribution (180-240 nm), high stability (tested up to 90 days), good biocompatibility with normal cells (95 %), and high scalability (600 mL/batch). For targeted chemotherapeutics, DOX-loaded bio-mimetic nanoparticles demonstrate better chemotherapeutic response (more than 95 % cancer cell death) than folic acid-attached DOX-loaded nanoparticles (78 % cancer cell death) as identified with 24 h MTT assay. The engineered nanoparticles exhibited cancer cell imaging and therapeutics capabili-ties by delivering imaging and drug molecules in cancer mimicked environment in vitro. Our findings suggest that the engineered nanoparticles not only overcome the limitations of nano-imaging but also provide additional advantages for targeted cancer therapeutics. 
    more » « less
  4. Fluorescent dye based nanoparticles (NPs) have received increased interest due to their high brightness and stability. In fluorescence microscopy and assays, high signal to background ratios and multiple channels of... 
    more » « less
  5. Abstract Outer membrane vesicles (OMVs) produced by Gram-negative bacteria have roles in cell-to-cell signaling, biofilm formation, and stress responses. Here, the effects of abiotic stressors on OMV contents and composition from biofilm cells of the plant health-promoting bacteriumPseudomonas chlororaphisO6 (PcO6) are examined. Two stressors relevant to this root-colonizing bacterium were examined: CuO nanoparticles (NPs)-a potential fertilizer and fungicide- and H2O2-released from roots during plant stress responses. Atomic force microscopy revealed 40–300 nm diameter OMVs from control and stressed biofilm cells. Raman spectroscopy with linear discriminant analysis (LDA) was used to identify changes in chemical profiles ofPcO6 cells and resultant OMVs according to the cellular stressor with 84.7% and 83.3% accuracies, respectively. All OMVs had higher relative concentrations of proteins, lipids, and nucleic acids thanPcO6 cells. The nucleic acid concentration in OMVs exhibited a cellular stressor-dependent increase: CuO NP-induced OMVs > H2O2-induced OMVs > control OMVs. Biochemical assays confirmed the presence of lipopolysaccharides, nucleic acids, and protein in OMVs; however, these assays did not discriminate OMV composition according to the cellular stressor. These results demonstrate the sensitivity of Raman spectroscopy using LDA to characterize and distinguish cellular stress effects on OMVs composition and contents. 
    more » « less