skip to main content

Title: Photometrically Classified Superluminous Supernovae from the Pan-STARRS1 Medium Deep Survey: A Case Study for Science with Machine-learning-based Classification

With the upcoming Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST), it is expected that only ∼0.1% of all transients will be classified spectroscopically. To conduct studies of rare transients, such as Type I superluminous supernovae (SLSNe), we must instead rely on photometric classification. In this vein, here we carry out a pilot study of SLSNe from the Pan-STARRS1 Medium Deep Survey (PS1-MDS), classified photometrically with ourSuperRAENNandSuperphotalgorithms. We first construct a subsample of the photometric sample using a list of simple selection metrics designed to minimize contamination and ensure sufficient data quality for modeling. We then fit the multiband light curves with a magnetar spin-down model using the Modular Open-Source Fitter for Transients (MOSFiT). Comparing the magnetar engine and ejecta parameter distributions of the photometric sample to those of the PS1-MDS spectroscopic sample and a larger literature spectroscopic sample, we find that these samples are consistent overall, but that the photometric sample extends to slower spins and lower ejecta masses, which correspond to lower-luminosity events, as expected for photometric selection. While our PS1-MDS photometric sample is still smaller than the overall SLSN spectroscopic sample, our methodology paves the way for an orders-of-magnitude increase in the SLSN more » sample in the LSST era through photometric selection and study.

« less
; ; ;
Award ID(s):
Publication Date:
Journal Name:
The Astrophysical Journal
Page Range or eLocation-ID:
Article No. 13
DOI PREFIX: 10.3847
Sponsoring Org:
National Science Foundation
More Like this

    We present deep optical and near-infrared photometry of UID 30901, a superluminous supernova (SLSN) discovered during the UltraVISTA survey. The observations were obtained with VIRCAM (YJHKs) mounted on the VISTA telescope, DECam (griz) on the Blanco telescope, and SUBARU Hyper Suprime-Cam (HSC; grizy). These multiband observations comprise +700 d making UID 30901 one of the best photometrically followed SLSNe to date. The host galaxy of UID 30901 is detected in a deep HST F814W image with an AB magnitude of 27.3 ± 0.2. While no spectra exist for the SN or its host galaxy, we perform our analysis assuming z = 0.37, based on the photometric redshift of a possible host galaxy found at a projected distance of 7 kpc. Fitting a blackbody to the observations, the radius, temperature, and bolometric light curve are computed. We find a maximum bolometric luminosity of 5.4 ± 0.34 × 1043 erg s−1. A flattening in the light curve beyond 600 d is observed and several possible causes are discussed. We find the observations to clearly favour an SLSN type I, and plausible power sources such as the radioactive decay of 56Ni and the spin-down of a magnetar are compared to the data. We find that the magnetar model yields a good fitmore »to the observations with the following parameters: a magnetic field B = 1.4 ± 0.3 × 1014 G, spin period of P = 6.0 ± 0.1 ms, and ejecta mass $M_{\mathrm{ ej}} = 11.9^{+4.8}_{-6.4} \,\mathrm{ M}_{\odot }$.

    « less
  2. ABSTRACT We present and discuss the optical spectrophotometric observations of the nearby (z = 0.087) Type I superluminous supernova (SLSN I) SN 2017gci, whose peak K-corrected absolute magnitude reaches Mg = −21.5 mag. Its photometric and spectroscopic evolution includes features of both slow- and of fast-evolving SLSN I, thus favoring a continuum distribution between the two SLSN-I subclasses. In particular, similarly to other SLSNe I, the multiband light curves (LCs) of SN 2017gci show two re-brightenings at about 103 and 142 d after the maximum light. Interestingly, this broadly agrees with a broad emission feature emerging around 6520 Å after ∼51 d from the maximum light, which is followed by a sharp knee in the LC. If we interpret this feature as Hα, this could support the fact that the bumps are the signature of late interactions of the ejecta with a (hydrogen-rich) circumstellar material. Then we fitted magnetar- and CSM-interaction-powered synthetic LCs on to the bolometric one of SN 2017gci. In the magnetar case, the fit suggests a polar magnetic field Bp ≃ 6 × 1014 G, an initial period of the magnetar Pinitial ≃ 2.8 ms, an ejecta mass $M_{\rm ejecta}\simeq 9\, \mathrm{M}_\odot $ and an ejecta opacity $\kappa \simeq 0.08\, \mathrm{cm}^{2}\, \rm{g}^{-1}$. A CSM-interactionmore »scenario would imply a CSM mass $\simeq 5\, \mathrm{M}_\odot $ and an ejecta mass $\simeq 12\, \mathrm{M}_\odot $. Finally, the nebular spectrum of phase  + 187 d was modeled, deriving a mass of $\sim 10\, {\rm M}_\odot$ for the ejecta. Our models suggest that either a magnetar or CSM interaction might be the power sources for SN 2017gci and that its progenitor was a massive ($40\, {\rm M}_\odot$) star.« less

    We present a sample of 14 hydrogen-rich superluminous supernovae (SLSNe II) from the Zwicky Transient Facility (ZTF) between 2018 and 2020. We include all classified SLSNe with peaks Mg < −20 mag with observed broad but not narrow Balmer emission, corresponding to roughly 20 per cent of all hydrogen-rich SLSNe in ZTF phase I. We examine the light curves and spectra of SLSNe II and attempt to constrain their power source using light-curve models. The brightest events are photometrically and spectroscopically similar to the prototypical SN 2008es, while others are found spectroscopically more reminiscent of non-superluminous SNe II, especially SNe II-L. 56Ni decay as the primary power source is ruled out. Light-curve models generally cannot distinguish between circumstellar interaction (CSI) and a magnetar central engine, but an excess of ultraviolet (UV) emission signifying CSI is seen in most of the SNe with UV data, at a wide range of photometric properties. Simultaneously, the broad H α profiles of the brightest SLSNe II can be explained through electron scattering in a symmetric circumstellar medium (CSM). In other SLSNe II without narrow lines, the CSM may be confined and wholly overrun by the ejecta. CSI, possibly involving mass lost in recent eruptions, is implied to be the dominant power source inmore »most SLSNe II, and the diversity in properties is likely the result of different mass loss histories. Based on their radiated energy, an additional power source may be required for the brightest SLSNe II, however – possibly a central engine combined with CSI.

    « less
  4. Abstract

    Current and future cosmological analyses with Type Ia supernovae (SNe Ia) face three critical challenges: (i) measuring the redshifts from the SNe or their host galaxies; (ii) classifying the SNe without spectra; and (iii) accounting for correlations between the properties of SNe Ia and their host galaxies. We present here a novel approach that addresses each of these challenges. In the context of the Dark Energy Survey (DES), we analyze an SN Ia sample with host galaxies in the redMaGiC galaxy catalog, a selection of luminous red galaxies. redMaGiC photo-zestimates are expected to be accurate toσΔz/(1+z)∼ 0.02. The DES-5YR photometrically classified SN Ia sample contains approximately 1600 SNe, and 125 of these SNe are in redMaGiC galaxies. We demonstrate that redMaGiC galaxies almost exclusively host SNe Ia, reducing concerns relating to classification uncertainties. With this subsample, we find similar Hubble scatter (to within ∼0.01 mag) using photometric redshifts in place of spectroscopic redshifts. With detailed simulations, we show that the bias due to using redMaGiC photo-zs on the measurement of the dark energy equation of statewis up to Δw∼ 0.01–0.02. With real data, we measure a difference inwwhen using the redMaGiC photo-zs versus the spec-zs of Δw= 0.005. Finally,more »we discuss how SNe in redMaGiC galaxies appear to comprise a more standardizable population, due to a weaker relation between color and luminosity (β) compared to the DES-3YR population by ∼5σ. These results establish the feasibility of performing redMaGiC SN cosmology with photometric survey data in the absence of spectroscopic data.

    « less
  5. Abstract

    Recent work has revealed that the light curves of hydrogen-poor (Type I) superluminous supernovae (SLSNe), thought to be powered by magnetar central engines, do not always follow the smooth decline predicted by a simple magnetar spin-down model. Here we present the first systematic study of the prevalence and properties of “bumps” in the post-peak light curves of 34 SLSNe. We find that the majority (44%–76%) of events cannot be explained by a smooth magnetar model alone. We do not find any difference in supernova properties between events with and without bumps. By fitting a simple Gaussian model to the light-curve residuals, we characterize each bump with an amplitude, temperature, phase, and duration. We find that most bumps correspond with an increase in the photospheric temperature of the ejecta, although we do not see drastic changes in spectroscopic features during the bump. We also find a moderate correlation (ρ≈ 0.5;p≈ 0.01) between the phase of the bumps and the rise time, implying that such bumps tend to happen at a certain “evolutionary phase,” (3.7 ± 1.4)trise. Most bumps are consistent with having diffused from a central source of variable luminosity, although sources further out in the ejecta are not excluded.more »With this evidence, we explore whether the cause of these bumps is intrinsic to the supernova (e.g., a variable central engine) or extrinsic (e.g., circumstellar interaction). Both cases are plausible, requiring low-level variability in the magnetar input luminosity, small decreases in the ejecta opacity, or a thin circumstellar shell or disk.

    « less