skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The cell biology of charophytes: Exploring the past and models for the future
Abstract Charophytes (Streptophyta) represent a diverse assemblage of extant green algae that are the sister lineage to land plants. About 500–600+ million years ago, a charophyte progenitor successfully colonized land and subsequently gave rise to land plants. Charophytes have diverse but relatively simple body plans that make them highly attractive organisms for many areas of biological research. At the cellular level, many charophytes have been used for deciphering cytoskeletal networks and their dynamics, membrane trafficking, extracellular matrix secretion, and cell division mechanisms. Some charophytes live in challenging habitats and have become excellent models for elucidating the cellular and molecular effects of various abiotic stressors on plant cells. Recent sequencing of several charophyte genomes has also opened doors for the dissection of biosynthetic and signaling pathways. While we are only in an infancy stage of elucidating the cell biology of charophytes, the future application of novel analytical methodologies in charophyte studies that include a broader survey of inclusive taxa will enhance our understanding of plant evolution and cell dynamics.  more » « less
Award ID(s):
2129443
PAR ID:
10371409
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Plant Physiology
ISSN:
0032-0889
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The extracellular matrix (ECM) of many charophytes, the assemblage of green algae that are the sister group to land plants, is complex, produced in large amounts, and has multiple essential functions. An extensive secretory apparatus and endomembrane system are presumably needed to synthesize and secrete the ECM, but structural details of such a system have not been fully characterized. Penium margaritaceum is a valuable unicellular model charophyte for studying secretion dynamics. We report that Penium has a highly organized endomembrane system, consisting of 150–200 non-mobile Golgi bodies that process and package ECM components into different sets of vesicles that traffic to the cortical cytoplasm, where they are transported around the cell by cytoplasmic streaming. At either fixed or transient areas, specific cytoplasmic vesicles fuse with the plasma membrane and secrete their constituents. Extracellular polysaccharide (EPS) production was observed to occur in one location of the Golgi body and sometimes in unique Golgi hybrids. Treatment of cells with brefeldin A caused disruption of the Golgi body, and inhibition of EPS secretion and cell wall expansion. The structure of the endomembrane system in Penium provides mechanistic insights into how extant charophytes generate large quantities of ECM, which in their ancestors facilitated the colonization of land. 
    more » « less
  2. null (Ed.)
    Cytokinesis in land plants involves the formation of a cell plate that develops into the new cell wall. Callose, a β-1,3 glucan accumulates at later stages of cell plate development presumably to stabilize this delicate membrane network during expansion. Cytokinetic callose is considered specific to multicellular plant species, as it has not been detected in unicellular algae. Here we present callose at the cytokinesis junction of the unicellular charophyte, P. margaritaceum. Callose deposition at the division plane of P. margaritaceum showed distinct, spatiotemporal patterns likely representing distinct roles of this polymer in cytokinesis. Pharmacological inhibition by Endosidin 7 resulted in cytokinesis defects, consistent with the essential role for this polymer in P. margaritaceum cell division. Cell wall deposition at the isthmus zone was also affected by the absence of callose, demonstrating the dynamic nature of new wall assembly in P. margaritaceum. The identification of candidate callose synthase genes provides molecular evidence for callose biosynthesis in P. margaritaceum. The evolutionary implications of cytokinetic callose in this unicellular Zygnematopycean alga is discussed in the context of the conquest of land by plants. 
    more » « less
  3. Abstract Green algae display a wide range of extracellular matrix (ECM) components that include various types of cell walls (CW), scales, crystalline glycoprotein coverings, hydrophobic compounds, and complex gels or mucilage. Recently, new information derived from genomic/transcriptomic screening, advanced biochemical analyses, immunocytochemical studies, and ecophysiology has significantly enhanced and refined our understanding of the green algal ECM. In the later diverging charophyte group of green algae, the CW and other ECM components provide insight into the evolution of plants and the ways the ECM modulates during environmental stress. Chlorophytes produce diverse ECM components, many of which have been exploited for various uses in medicine, food, and biofuel production. This review highlights major advances in ECM studies of green algae. 
    more » « less
  4. Abstract MotivationRapid climate change is altering plant communities around the globe fundamentally. Despite progress in understanding how plants respond to these climate shifts, accumulating evidence suggests that disturbance could not only modify expected plant responses but, in some cases, have larger impacts on compositional shifts than climate change. Climate‐driven disturbances are becoming increasingly common in many biomes and are key drivers of vegetation dynamics at both species and community levels. Palaeoecological records provide valuable observational windows for elucidating the long‐term impacts of these disturbances on plant dynamics; however, sparse resolution and difficulty in disentangling drivers of change limit our ability to understand the impact of disturbance on plant communities. In this targeted review, we highlight emerging opportunities in palaeoecology to advance our understanding about how disturbance, especially fire, impacts the ecological and evolutionary dynamics of terrestrial plant communities. LocationGlobal examples, with many from North America. ConclusionsWe propose a set of palaeoecological and integrative approaches that could greatly enhance our understanding of how disturbance regimes influence global plant dynamics. Specifically, we identify four future study areas: (1) focus on palaeoecological disturbance proxies beyond fire and leverage multi proxy research to examine the influence of interacting disturbances on plant community dynamics; (2) use advances in disturbance and vegetation reconstructions, including ancient sedimentary DNA, to provide the spatial, temporal and taxonomic resolution needed to resolve the relationship between changing disturbance regimes and corresponding shifts in plant community composition; (3) integrate palaeoecological, archaeological and Indigenous knowledge to disentangle the complex interplay between climate, human land use, fire and vegetation structure; and (4) apply “functional palaeoecology” and the synergy between palaeoecology and genetics to understand how fire disturbance has served as a long‐standing selective agent on plants. These frameworks could increase the resolution of disturbance‐driven plant dynamics, potentially providing valuable information for future management. 
    more » « less
  5. Abstract Phenotypic plasticity allows a plant cell to alter its structure and function in response to external pressure. This adaptive phenomenon has also been important in the evolution of plants including the emergence of land plants from a streptophyte alga.Penium margaritaceumis a unicellular zygnematophyte (i.e., the group of streptophyte algae that is sister to land plants) that was employed in order to study phenotypic plasticity with a focus on the role of subcellular expansion centers and the cell wall in this process. Live cell fluorescence labeling, immunofluorescence labeling, transmission electron microscopy, and scanning electron microscopy showed significant subcellular changes and alterations to the cell wall. When treated with the actin-perturbing agent, cytochalasin E, cytokinesis is arrested and cells are transformed into pseudo-filaments made of up to eight or more cellular units. When treated with the cyclin-dependent kinase (CDK) inhibitor, roscovitine, cells converted to a unique phenotype with a narrow isthmus zone. 
    more » « less