skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The extracellular matrix of green algae
Abstract Green algae display a wide range of extracellular matrix (ECM) components that include various types of cell walls (CW), scales, crystalline glycoprotein coverings, hydrophobic compounds, and complex gels or mucilage. Recently, new information derived from genomic/transcriptomic screening, advanced biochemical analyses, immunocytochemical studies, and ecophysiology has significantly enhanced and refined our understanding of the green algal ECM. In the later diverging charophyte group of green algae, the CW and other ECM components provide insight into the evolution of plants and the ways the ECM modulates during environmental stress. Chlorophytes produce diverse ECM components, many of which have been exploited for various uses in medicine, food, and biofuel production. This review highlights major advances in ECM studies of green algae.  more » « less
Award ID(s):
2129443
PAR ID:
10438056
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Plant Physiology
ISSN:
0032-0889
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The extracellular matrix (ECM) of many charophytes, the assemblage of green algae that are the sister group to land plants, is complex, produced in large amounts, and has multiple essential functions. An extensive secretory apparatus and endomembrane system are presumably needed to synthesize and secrete the ECM, but structural details of such a system have not been fully characterized. Penium margaritaceum is a valuable unicellular model charophyte for studying secretion dynamics. We report that Penium has a highly organized endomembrane system, consisting of 150–200 non-mobile Golgi bodies that process and package ECM components into different sets of vesicles that traffic to the cortical cytoplasm, where they are transported around the cell by cytoplasmic streaming. At either fixed or transient areas, specific cytoplasmic vesicles fuse with the plasma membrane and secrete their constituents. Extracellular polysaccharide (EPS) production was observed to occur in one location of the Golgi body and sometimes in unique Golgi hybrids. Treatment of cells with brefeldin A caused disruption of the Golgi body, and inhibition of EPS secretion and cell wall expansion. The structure of the endomembrane system in Penium provides mechanistic insights into how extant charophytes generate large quantities of ECM, which in their ancestors facilitated the colonization of land. 
    more » « less
  2. Abstract While algal phago-mixotrophs play a major role in aquatic microbial food webs, their diversity remains poorly understood. Recent studies have indicated several species of prasinophytes, early diverging green algae, to be able to consume bacteria for nutrition. To further explore the occurrence of phago-mixotrophy in green algae, we conducted feeding experiments with live fluorescently labeled bacteria stained with CellTracker Green CMFDA, heat-killed bacteria stained with 5-(4,6-dichlorotriazin-2-yl) aminofluorescein (DTAF), and magnetic beads. Feeding was detected via microscopy and/or flow cytometry in five strains of prasinophytes when provided with live bacteria: Pterosperma cristatum NIES626, Pyramimonas parkeae CCMP726, Pyramimonas parkeae NIES254, Nephroselmis pyriformis RCC618, and Dolichomastix tenuilepis CCMP3274. No feeding was detected when heat-killed bacteria or magnetic beads were provided, suggesting a strong preference for live prey in the strains tested. In parallel to experimental assays, green algal bacterivory was investigated using a gene-based prediction model. The predictions agreed with the experimental results and suggested bacterivory potential in additional green algae. Our observations underline the likelihood of widespread occurrence of phago-mixotrophy among green algae, while additionally highlighting potential biases introduced when using prey proxy to evaluate bacterial ingestion by algal cells. 
    more » « less
  3. Abstract Live imaging of the brain extracellular matrix (ECM) provides vital insights into changes that occur in neurological disorders. Current techniques such as second or third‐harmonic generation offer limited contrast for live imaging of the brain ECM. Here, a new method, pan‐ECM via chemical labeling of extracellular proteins, is introduced for live brain ECM imaging. pan‐ECM labels all major ECM components in live tissue including the interstitial matrix, basement membrane, and perineuronal nets. pan‐ECM enables in vivo observation of the ECM heterogeneity between the glioma core and margin, as well as the assessment of ECM deterioration under stroke condition, without ECM shrinkage from tissue fixation. These findings indicate that the pan‐ECM approach is a novel way to image the entire brain ECM in live brain tissue with optical resolution. pan‐ECM has the potential to advance the understanding of ECM in brain function and neurological diseases. 
    more » « less
  4. Beisner, Beatrix E (Ed.)
    Abstract Eutrophication is increasingly becoming a problem for freshwater lakes. We evaluated the effects of additions nitrate (N as NO3−) and phosphate (P as PO43−) on phytoplankton in a temperate lake reservoir (Lake Murray, South Carolina). High-performance liquid chromatography and ChemTax were used to measure concentrations of microalgal groups in the lake in 2021–2023 and bioassays. The phytoplankton community during the summer months consisted of green algae (37%), diatoms (27%), cryptophytes (20%), cyanobacteria (11%) and dinoflagellates (4%). Bioassays of N (20-μM NaNO3), P (10-μM KH2PO4) and N + P additions were conducted monthly from April to October 2023. All microalgal groups, except cyanobacteria, exhibited nutrient co-limitation with N as the primary limiting nutrient. Similarly, cyanobacteria exhibited co-limitation, but with P as the primary limiting nutrient. Nutrient additions of N + P (but not N or P singularly) also resulted in significant community shifts, with a strong response by green algae. The management implications for this study are that increases in N and P loading and ratio changes in the lake may result in major phytoplankton community changes toward dominance by green algae. However, increasing P loading relative to N may promote cyanobacterial growth over other phytoplankton groups in this lake system. 
    more » « less
  5. Abstract Glioblastoma multiforme (GBM) is the most lethal primary brain tumor characterized by high cellular and molecular heterogeneity, hypervascularization, and innate drug resistance. Cellular components and extracellular matrix (ECM) are the two primary sources of heterogeneity in GBM. Here, biomimetic tri‐regional GBM models with tumor regions, acellular ECM regions, and an endothelial region with regional stiffnesses patterned corresponding to the GBM stroma, pathological or normal brain parenchyma, and brain capillaries, are developed. Patient‐derived GBM cells, human endothelial cells, and hyaluronic acid derivatives are used to generate a species‐matched and biochemically relevant microenvironment. This in vitro study demonstrates that biophysical cues are involved in various tumor cell behaviors and angiogenic potentials and promote different molecular subtypes of GBM. The stiff models are enriched in the mesenchymal subtype, exhibit diffuse invasion of tumor cells, and induce protruding angiogenesis and higher drug resistance to temozolomide. Meanwhile, the soft models demonstrate enrichment in the classical subtype and support expansive cell growth. The three‐dimensional bioprinting technology utilized in this study enables rapid, flexible, and reproducible patient‐specific GBM modeling with biophysical heterogeneity that can be employed by future studies as a tunable system to interrogate GBM disease mechanisms and screen drug compounds. 
    more » « less