skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ℏω versus ℏk: dispersion and energy constraints on time-varying photonic materials and time crystals [Invited]
Photonic time-varying systems have attracted significant attention owing to their rich physics and potential opportunities for new and enhanced functionalities. In this context, the duality of space and time in wave physics has been particularly fruitful to uncover interesting physical effects in the temporal domain, such as reflection/refraction at temporal interfaces and momentum-bandgaps in time crystals. However, the characteristics of the temporal/frequency dimension, particularly its relation to causality and energy conservation ( ℏ<#comment/> ω<#comment/> is energy, whereas ℏ<#comment/> k is momentum), create challenges and constraints that are unique to time-varying systems and are not present in their spatially varying counterparts. Here, we overview two key physical aspects of time-varying photonics that have only received marginal attention so far, namely temporal dispersion and external power requirements, and explore their implications. We discuss how temporal dispersion, an inherent property of any physical causal material, makes the fields evolve continuously at sharp temporal interfaces and may limit the strength of fast temporal modulations and of various resulting effects. Furthermore, we show that changing the refractive index in time always involves large amounts of energy. We derive power requirements to observe a time-crystal response in one of the most popular material platforms in time-varying photonics, i.e., transparent conducting oxides, and we argue that these effects are almost always obscured by less exotic nonlinear phenomena. These observations and findings shed light on the physics and constraints of time-varying photonics, and may guide the design and implementation of future time-modulated photonic systems.  more » « less
Award ID(s):
1741694
PAR ID:
10371574
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optical Materials Express
Volume:
12
Issue:
10
ISSN:
2159-3930
Format(s):
Medium: X Size: Article No. 3904
Size(s):
Article No. 3904
Sponsoring Org:
National Science Foundation
More Like this
  1. Thin-film lithium-niobate-on-insulator (LNOI) has emerged as a superior integrated-photonics platform for linear, nonlinear, and electro-optics. Here we combine quasi-phase-matching, dispersion engineering, and tight mode confinement to realize nonlinear parametric processes with both high efficiency and wide wavelength tunability. On a millimeter-long, Z-cut LNOI waveguide, we demonstrate efficient ( 1900 ±<#comment/> 500 %<#comment/> W −<#comment/> 1 c m −<#comment/> 2 ) and highly tunable ( −<#comment/> 1.71 n m / K ) second-harmonic generation from 1530 to 1583 nm by type-0 quasi-phase-matching. Our technique is applicable to optical harmonic generation, quantum light sources, frequency conversion, and many other photonic information processes across visible to mid-IR spectral bands. 
    more » « less
  2. In terahertz (THz) photonics, there is an ongoing effort to develop thin, compact devices such as dielectric photonic crystal (PhC) slabs with desirable light–matter interactions. However, previous works in THz PhC slabs have been limited to rigid substrates with thicknesses ∼<#comment/> 100 s of micrometers. Dielectric PhC slabs have been shown to possess in-plane modes that are excited by external radiation to produce sharp guided-mode resonances with minimal absorption for applications in sensors, optics, and lasers. Here we confirm the existence of guided resonances in a membrane-type THz PhC slab with subwavelength ( λ<#comment/> 0 / 6 −<#comment/> λ<#comment/> 0 / 12 ) thicknesses of flexible dielectric polyimide films. The transmittance of the guided resonances was measured for different structural parameters of the unit cell. Furthermore, we exploited the flexibility of the samples to modulate the guided modes for a bend angle of θ<#comment/> ≥<#comment/> 5 ∘<#comment/> , confirmed experimentally by the suppression of these modes. The mechanical flexibility of the device allows for an additional degree of freedom in system design for high-speed communications, soft wearable photonics, and implantable medical devices. 
    more » « less
  3. Materials with strong second-order ( χ<#comment/> ( 2 ) ) optical nonlinearity, especially lithium niobate, play a critical role in building optical parametric oscillators (OPOs). However, chip-scale integration of low-loss χ<#comment/> ( 2 ) materials remains challenging and limits the threshold power of on-chip χ<#comment/> ( 2 ) OPO. Here we report an on-chip lithium niobate optical parametric oscillator at the telecom wavelengths using a quasi-phase-matched, high-quality microring resonator, whose threshold power ( ∼<#comment/> 30 µ<#comment/> W ) is 400 times lower than that in previous χ<#comment/> ( 2 ) integrated photonics platforms. An on-chip power conversion efficiency of 11% is obtained from pump to signal and idler fields at a pump power of 93 µW. The OPO wavelength tuning is achieved by varying the pump frequency and chip temperature. With the lowest power threshold among all on-chip OPOs demonstrated so far, as well as advantages including high conversion efficiency, flexibility in quasi-phase-matching, and device scalability, the thin-film lithium niobate OPO opens new opportunities for chip-based tunable classical and quantum light sources and provides a potential platform for realizing photonic neural networks. 
    more » « less
  4. The scattered intensity from large spheres with a real part of the refractive index of n = 1.33 , 1.5 , 2.0 is investigated as the radius R and an imaginary part of the refractive index κ<#comment/> are varied. It is shown that the product of κ<#comment/> and the size parameter k R , κ<#comment/> kR , is a universal parameter describing the quenching of the refraction phenomenon of the scattered light: the refraction hump, the generalized rainbows, and the glory. The physical reason for this is that κ<#comment/> kR is the inverse of the relative skin depth of light penetration into the sphere, which is demonstrated by calculations of the internal fields that darken universally as κ<#comment/> kR increases. 
    more » « less
  5. In this Letter, we present a high extinction ratio and compact on-chip polarization beam splitter (PBS), based on an extreme skin-depth (eskid) waveguide. Subwavelength-scale gratings form an effectively anisotropic metamaterial cladding and introduce a large birefringence. The anisotropic dielectric perturbation of the metamaterial cladding suppresses the TE polarization extinction via exceptional coupling, while the large birefringence efficiently cross-couples the TM mode, thus reducing the coupling length. We demonstrated the eskid-PBS on a silicon-on-insulator platform and achieved an ultra-high extinction ratio PBS ( ≈<#comment/> 60 d B for TE and ≈<#comment/> 48 d B for TM) with a compact coupling length ( ≈<#comment/> 14.5 µ<#comment/> m ). The insertion loss is also negligible ( <<#comment/> 0.6 d B ). The bandwidth is ><#comment/> 80 (30) nm for the TE (TM) extinction ratio ><#comment/> 20 d B . Our ultra-high extinction ratio PBS is crucial in implementing efficient polarization diversity circuits, especially where a high degree of polarization distinguishability is necessary, such as photonic quantum information processing. 
    more » « less