The mid-IR spectroscopic properties of
Thin-film lithium-niobate-on-insulator (LNOI) has emerged as a superior integrated-photonics platform for linear, nonlinear, and electro-optics. Here we combine quasi-phase-matching, dispersion engineering, and tight mode confinement to realize nonlinear parametric processes with both high efficiency and wide wavelength tunability. On a millimeter-long, Z-cut LNOI waveguide, we demonstrate efficient (
- Award ID(s):
- 1842680
- PAR ID:
- 10166472
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Letters
- Volume:
- 45
- Issue:
- 13
- ISSN:
- 0146-9592; OPLEDP
- Format(s):
- Medium: X Size: Article No. 3789
- Size(s):
- Article No. 3789
- Sponsoring Org:
- National Science Foundation
More Like this
-
doped low-phonon and crystals grown by the Bridgman technique have been investigated. Using optical excitations at and , both crystals exhibited IR emissions at , , , and at room temperature. The mid-IR emission at 4.5 µm, originating from the transition, showed a long emission lifetime of for doped , whereas doped exhibited a shorter lifetime of . The measured emission lifetimes of the state were nearly independent of the temperature, indicating a negligibly small nonradiative decay rate through multiphonon relaxation, as predicted by the energy-gap law for low-maximum-phonon energy hosts. The room temperature stimulated emission cross sections for the transition in doped and were determined to be and , respectively. The results of Judd–Ofelt analysis are presented and discussed. -
We experimentally show the spectrally averaged nonlinear refractive index and absorption coefficient for liquid water, water vapor,
-pinene, and Si using a full-phase analysis in the terahertz regime through a standard time-domain spectrometer. Our results confirm that the nonlinear index of refraction of the liquid samples in this regime exceeds the near-infrared optical nonlinear index by six orders of magnitude. In the case of liquid water and water vapor at atmospheric pressure, we find a nonlinear index of and , respectively, which are both much larger than expected. -
A novel optical frequency division technique, called regenerative harmonic injection locking, is used to transfer the timing stability of an optical frequency comb with a repetition rate in the millimeter wave range (
) to a chip-scale mode-locked laser with a repetition rate. By doing so, the 300 GHz optical frequency comb is optically divided by a factor of to 10 GHz. The stability of the mode-locked laser after regenerative harmonic injection locking is at 1 s with a trend. To facilitate optical frequency division, a coupled opto-electronic oscillator is implemented to assist the injection locking process. This technique is exceptionally power efficient, as it uses less than of optical power to achieve stable locking. -
We report on spectroscopic measurements on the
transition in neutral europium-151 and europium-153 at 459.4 nm. The center of gravity frequencies for the 151 and 153 isotopes, reported for the first time in this paper, to our knowledge, were found to be 652,389,757.16(34) MHz and 652,386,593.2(5) MHz, respectively. The hyperfine coefficients for the state were found to be , and , , which all agree with previously published results except for A(153), which shows a small discrepancy. The isotope shift is found to be 3163.8(6) MHz, which also has a discrepancy with previously published results. -
We experimentally demonstrate simultaneous turbulence mitigation and channel demultiplexing in a 200 Gbit/s orbital-angular-momentum (OAM) multiplexed link by adaptive wavefront shaping and diffusing (WSD) the light beams. Different realizations of two emulated turbulence strengths (the Fried parameter
) are mitigated. The experimental results show the following. (1) Crosstalk between OAM and modes can be reduced by and , respectively, under the weaker turbulence ( ); crosstalk is further improved by and , respectively, under most realizations in the stronger turbulence ( ). (2) The optical signal-to-noise ratio penalties for the bit error rate performance are measured to be and under weaker turbulence, while measured to be and under stronger turbulence for OAM and mode, respectively.