skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rational Design of Superconducting Metal Hydrides via Chemical Pressure Tuning**
Abstract The high critical superconducting temperatures (Tcs) of metal hydride phases with clathrate‐like hydrogen networks have generated great interest. Herein, we employ the Density Functional Theory‐Chemical Pressure (DFT‐CP) method to explain why certain electropositive elements adopt these structure types, whereas others distort the hydrogenic lattice, thereby decreasing theTc. The progressive opening of the H24polyhedra in MH6phases is shown to arise from internal pressures exerted by large metal atoms, some of which may favor an even higher hydrogen content that loosens the metal atom coordination environments. The stability of the LaH10and LaBH8phases is tied to stuffing of their shared hydrogen network with either additional hydrogen or boron atoms. The predictive capabilities of DFT‐CP are finally applied to the Y−X−H system to identify possible ternary additions yielding a superconducting phase stable to low pressures.  more » « less
Award ID(s):
1827815
PAR ID:
10371589
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
61
Issue:
38
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The recent theory-driven discovery of a class of clathrate hydrides (e.g., CaH6, YH6, YH9, and LaH10) with superconducting critical temperatures (Tc) well above 200 K has opened the prospects for “hot” superconductivity above room temperature under pressure. Recent efforts focus on the search for superconductors among ternary hydrides that accommodate more diverse material types and configurations compared to binary hydrides. Through extensive computational searches, we report the prediction of a unique class of thermodynamically stable clathrate hydrides structures consisting of two previously unreported H24and H30hydrogen clathrate cages at megabar pressures. Among these phases, LaSc2H24shows potential hot superconductivity at the thermodynamically stable pressure range of 167 to 300 GPa, with calculatedTcs up to 331 K at 250 GPa and 316 K at 167 GPa when the important effects of anharmonicity are included. The very high critical temperatures are attributed to an unusually large hydrogen-derived density of states at the Fermi level arising from the newly reported peculiar H30as well as H24cages in the structure. Our predicted introduction of Sc in the La–H system is expected to facilitate future design and realization of hot superconductors in ternary clathrate superhydrides. 
    more » « less
  2. Abstract The current pressing challenge in the field of superconducting hydride research is to lower the stable pressure of such materials for practical applications. Molecular hydrides are usually stable under moderate pressure, but the underlying metallization mechanism remains elusive. Here, the important role of chemical interactions in governing the structures and properties of molecular hydrides is demonstrated. A new mechanism is proposed for obtaining high‐temperature and even room‐temperature superconductivity in molecular hydrides and report that the ternary hydride NaKH12hostsTcvalues up to 245 K at moderate pressure of 60 GPa. Both the excellent stability and superconductivity of NaKH12originate from the fact that the localized electrons in the interstitial region of the metal lattice occupying the crystal orbitals well matched with the hydrogen lattice and forming chemical templates to assist the assembly of H2units. These localized electrons weaken the H─H covalent bonds and improve the charge connectivity between the H2units, ensuring the strong coupling between electrons and hydrogen‐dominated optical phonons. The theory provides a key perspective for understanding the superconductivity of molecular hydrides with various structural motifs, opening the door to obtaining high‐temperature superconductors from molecular hydrides at moderate pressures. 
    more » « less
  3. Abstract Intermetallic phases have been known to exhibit a wide diversity since Pauling's seminal investigations into NaCd2in the 1920s that, along with Cd3Cu4and Mg2Al3, was shown by Samson to crystallize with a giant cubic cell containing >1000 atoms. The concept of structural plasticity – the notion that complex structures emerge from the release of internal stresses that would arise in simpler structures – has recently been used to account for one family of intermetallics, tracing the structures of Ca2Ag7, Ca14Cd51, CaPd5, and CaCd6to chemical pressure (CP) issues in the CaCu5type. Here, we extend the ideal of structural plasticity closer to the giant cells elucidated by Pauling and Samson through its application to a series of Mo−Fe−Cr Frank‐Kasper phases. We begin with a DFT‐CP analysis of the MgZn2‐type phase MoFe2, which serves as a parent structure toμ‐Mo6Fe7andχ‐Mo5Cr6Fe18. The analysis reveals negative CPs around the Mo atoms arising from collisions between the Fe atoms. Tighter Mo coordination is provided in theμ‐ orχ‐phases by substituting some of the Friauf polyhedra of MoFe2with eitherμ‐ andχ‐phase units, resulting in layers or blocks of Laves‐like connectivity. Sites preferences in theμ‐phase and the role of Cr substitution in theχ‐phase are explained through the dual lenses of CP and electronegativity. Parallels to the features of NaCd2hint that such giant‐unit‐celled intermetallics can represent striking manifestations of structural plasticity. 
    more » « less
  4. Abstract A central theme in the structural chemistry of intermetallic phases is that complex structures can be derived from variations on simpler ones. This is vividly demonstrated by the variety of structure types that can be connected to chemical pressure (CP)‐driven transformations of the simple CaCu5type. In this Article, we investigate an intriguing addition to this family: the EuMg5‐type intermetallics, as exemplified by YZn5. As expected from the large negative CPs around the cations in CaCu5‐type structures, YZn5exhibits tightened coordination environments around the cations. However, it also contains an unusually inhomogeneous atomic packing, particularly in channels running between the Y atoms alongc. Our structural reinvestigation of YZn5reveals a disordered occupation pattern of Zn atoms within these channels, consistent with the EuMg5+xtype, a disordered variant of the EuMg5type. DFT‐CP analysis indicates that the transition from the CaCu5type to the YZn5+xstructure indeed creates more compact Y environments, but strong tensions remain within the Zn sublattice. These include CP features on the channel walls that provide a mechanism for the communication of structural information between the channels and favorable cooperation in their occupation patterns. Based on these results, a structural model is proposed that explains an earlier observation of superstructure reflections in the diffraction patterns of ErZn5corresponding to a √3×√3×3 supercell. 
    more » « less
  5. Abstract Experiments investigating magnetic-field-tuned superconductor–insulator transition (HSIT) mostly focus on two-dimensional material systems where the transition and its proximate ground-state phases, often exhibit features that are seemingly at odds with the expected behavior. Here we present a complementary study of a three-dimensional pressure-packed amorphous indium-oxide (InOx) powder where granularity controls the HSIT. Above a low threshold pressure of ∼0.2 GPa, vestiges of superconductivity are detected, although neither a true superconducting transition nor insulating behavior are observed. Instead, a saturation at very high resistivity at low pressure is followed by saturation at very low resistivity at higher pressure. We identify both as different manifestations of anomalous metallic phases dominated by superconducting fluctuations. By analogy with previous identification of the low resistance saturation as a ‘failed superconductor’, our data suggests that the very high resistance saturation is a manifestation of a ‘failed insulator’. Above a threshold pressure of ∼6 GPa, the sample becomes fully packed, and superconductivity is robust, withTCtunable with pressure. A quantum critical point atPC∼ 25 GPa marks the complete suppression of superconductivity. For a finite pressure belowPC, a magnetic field is shown to induce a HSIT from a true zero-resistance superconducting state to a weakly insulating behavior. Determining the critical field,HC, we show that similar to the 2D behavior, the insulating-like state maintains a superconducting character, which is quenched at higher field, above which the magnetoresistance decreases to its fermionic normal state value. 
    more » « less