skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Static multi-sourced data retrieval in elastic optical networks
Extreme-scale science applications are highly innovative and constantly evolving. They are expected to generate data in the petabyte and exabyte ranges. Erasure coding has been widely adopted for data storage in data center networks, where the data are encoded and stored in multiple locations. Therefore, an efficient data retrieval service is needed to transfer encoded data from selected multiple stored nodes to a single destination. Elastic optical networks are a promising backbone technology for data center communication due to their capability to efficiently and flexibly allocate the huge optical bandwidth to heterogeneous traffic demands. In this paper, the erasure-coded multi-sourced data retrieval routing and scheduling problem is studied for static traffic in elastic optical networks, and the objective is to minimize the total transmission completion time of all the requests. An integer linear programming formulation and low-complexity heuristic are proposed. Furthermore, analytical lower bounds are derived and a meta-heuristic, Tabu Search, is adopted to solve the problem. Numerical results are presented to show the effectiveness of the proposed methods.  more » « less
Award ID(s):
2008530
PAR ID:
10371646
Author(s) / Creator(s):
;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Journal of Optical Communications and Networking
Volume:
14
Issue:
10
ISSN:
1943-0620; JOCNBB
Format(s):
Medium: X Size: Article No. 792
Size(s):
Article No. 792
Sponsoring Org:
National Science Foundation
More Like this
  1. Service function chaining (SFC), consisting of a sequence of virtual network functions (VNFs) (i.e., firewalls and load balancers), is an effective service provision technique in modern data center networks. By requiring cloud user traffic to traverse the VNFs in order, SFC im- proves the security and performance of the cloud user applications. In this paper, we study how to place an SFC inside a data center to mini- mize the network traffic of the virtual machine (VM) communication. We take a cooperative multi-agent reinforcement learning approach, wherein multiple agents collaboratively figure out the traffic-efficient route for the VM communication. Underlying the SFC placement is a fundamental graph-theoretical prob- lem called the k-stroll problem. Given a weighted graph G(V, E), two nodes s, t ∈ V , and an integer k, the k-stroll problem is to find the shortest path from s to t that visits at least k other nodes in the graph. Our work is the first to take a multi-agent learning approach to solve k- stroll problem. We compare our learning algorithm with an optimal and exhaustive algorithm and an existing dynamic programming(DP)-based heuristic algorithm. We show that our learning algorithm, although lack- ing the complete knowledge of the network assumed by existing research, delivers comparable or even better VM communication time while taking two orders of magnitude of less execution time. 
    more » « less
  2. The high reliability required by many future-generation network services can be enforced by proper resource assignments by means of logical partitions, i.e., network slices, applied in optical metro-aggregation networks. Different strategies can be applied to deploy the virtual network functions (VNFs) composing the slices over physical nodes, while providing different levels of resource isolation (among slices) and protection against failures, based on several available techniques. Considering that, in optical metro-aggregation networks, protection can be ensured at different layers, and the slice protection with traffic grooming calls for evolved multilayer protection approaches. In this paper, we investigate the problem of reliable slicing with protection at the lightpath layer for different levels of slice isolation and different VNF deployment strategies. We model the problem through an integer linear program (ILP), and we devise a heuristic for joint optimization of VNF placement and ligthpath selection. The heuristic maps nodes and links over the physical network in a coordinated manner and provides an effective placement of radio access network functions and the routing and wavelength assignment for the optical layer. The effectiveness of the proposed heuristic is validated by comparison with the optimal solution provided by the ILP. Our illustrative numerical results compare the impact of different levels of isolation, showing that higher levels of network and VNF isolation are characterized by higher costs in terms of optical and computation resources. 
    more » « less
  3. We consider a dynamic sensor fusion problem where a large number of remote sensors observe a common Gauss-Markov process and the observations are transmitted to a fusion center over a resource constrained communication network. The design objective is to allocate an appropriate data rate to each sensor in such a way that the total data traffic to the fusion center is minimized, subject to a constraint on the fusion center's state estimation error covariance. We show that the problem can be formulated as a difference-of-convex program, to which we apply the convex-concave procedure (CCP) and the alternating direction method of multiplier (ADMM). Through a numerical study on a truss bridge sensing system, we observe that our algorithm tends to allocate zero data rate to unneeded sensors, implying that the proposed method is an effective heuristic for sensor selection. 
    more » « less
  4. Data reliability and availability, and serviceability (RAS) of erasure-coded data centers are highly affected by data repair induced by node failures. In a traditional failure identification scheme, all chunks share the same identification time threshold, thus losing opportunities to further improve the RAS. To solve this problem, we propose RAFI, a novel risk-aware failure identification scheme. In RAFI, chunk failures in stripes experiencing different numbers of failed chunks are identified using different time thresholds. For those chunks in a high-risk stripe, a shorter identification time is adopted, thus improving the overall data reliability and availability. For those chunks in a low-risk stripe, a longer identification time is adopted, thus reducing the repair network traffic. Therefore, RAS can be improved simultaneously. We also propose three optimization techniques to reduce the additional overhead that RAFI imposes on management nodes' and to ensure that RAFI can work properly under large-scale clusters. We use simulation, emulation, and prototyping implementation to evaluate RAFI from multiple aspects. Simulation and prototype results prove the effectiveness and correctness of RAFI, and the performance improvement of the optimization techniques on RAFI is demonstrated by running the emulator. 
    more » « less
  5. Elastic optical networks (EONs) operating in the C-band have been widely deployed worldwide. However, two major technologies—multiband elastic optical networks (MB-EONs) and space division multiplexed elastic optical networks (SDM-EONs)—can significantly increase network capacity beyond traditional EONs. A one-time greenfield deployment of these flexible-grid technologies may not be practical, as existing investments in flexible-grid EONs need to be preserved and ongoing services must face minimal disruption. Therefore, we envision the coexistence of flexible-grid, multiband, and multicore technologies during the brownfield migration. Each technology represents a tradeoff between higher capacity and greater deployment overhead, directly impacting network performance. Moreover, as traffic demands continue rising, capacity exhaustion becomes inevitable. Considering the different characteristics of these technologies, we propose a robust network planning solution called Progressive Optics Deployment and Integration for Growing Yields (PRODIGY+) to gradually migrate current C-band EONs. PRODIGY+ employs proactive measures inspired by the Swiss Cheese Model, making the network robust to traffic peaks while meeting service level agreements. The upgrade strategy enables a gradual transition to minimize migration costs while continuously supporting increasing traffic demands. We provide a detailed comparison of our proposed PRODIGY+ strategy against baseline strategies, demonstrating its superior performance. 
    more » « less