skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.

Title: Multilayer protection-at-lightpath for reliable slicing with isolation in optical metro-aggregation networks

The high reliability required by many future-generation network services can be enforced by proper resource assignments by means of logical partitions, i.e., network slices, applied in optical metro-aggregation networks. Different strategies can be applied to deploy the virtual network functions (VNFs) composing the slices over physical nodes, while providing different levels of resource isolation (among slices) and protection against failures, based on several available techniques. Considering that, in optical metro-aggregation networks, protection can be ensured at different layers, and the slice protection with traffic grooming calls for evolved multilayer protection approaches. In this paper, we investigate the problem of reliable slicing with protection at the lightpath layer for different levels of slice isolation and different VNF deployment strategies. We model the problem through an integer linear program (ILP), and we devise a heuristic for joint optimization of VNF placement and ligthpath selection. The heuristic maps nodes and links over the physical network in a coordinated manner and provides an effective placement of radio access network functions and the routing and wavelength assignment for the optical layer. The effectiveness of the proposed heuristic is validated by comparison with the optimal solution provided by the ILP. Our illustrative numerical results compare the impact of different levels of isolation, showing that higher levels of network and VNF isolation are characterized by higher costs in terms of optical and computation resources.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Journal of Optical Communications and Networking
1943-0620; JOCNBB
Page Range / eLocation ID:
Article No. 289
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Next-generation optical metro-access networks are expected to support end-to-end virtual network slices for critical 5G services. However, disasters affecting physical infrastructures upon which network slices are mapped can cause significant disruption in these services. Operators can deploy recovery units or trucks to restore services based on slice requirements. In this study, we investigate the problem of slice-aware service restoration in metro-access networks with specialized recovery trucks to restore services after a disaster failure. We model the problem based on classical vehicle-routing problem to find optimal routes for recovery trucks to failure sites to provide temporary backup service until the network components are repaired. Our proposed slice-aware service-restoration approach is formulated as a mixed integer linear program with the objective to minimize penalty of service disruption across different network slices.We compare our slice-aware approach with a slice-unaware approach and show that our proposed approach can achieve significant reduction in service-disruption penalty 
    more » « less
  2. null (Ed.)
    Efficient provisioning of 5G network slices is a major challenge for 5G network slicing technology. Previous slice provisioning methods have only considered network resource attributes and ignored network topology attributes. These methods may result in a decrease in the slice acceptance ratio and the slice provisioning revenue. To address these issues, we propose a two-stage heuristic slice provisioning algorithm, called RT-CSP, for the 5G core network by jointly considering network resource attributes and topology attributes in this paper. The first stage of our method is called the slice node provisioning stage, in which we propose an approach to scoring and ranking nodes using network resource attributes (i.e., CPU capacity and bandwidth) and topology attributes (i.e., degree centrality and closeness centrality). Slice nodes are then provisioned according to the node ranking results. In the second stage, called the slice link provisioning stage, the k-shortest path algorithm is implemented to provision slice links. To further improve the performance of RT-CSP, we propose RT-CSP+, which uses our designed strategy, called minMaxBWUtilHops, to select the best physical path to host the slice link. The strategy minimizes the product of the maximum link bandwidth utilization of the candidate physical path and the number of hops in it to avoid creating bottlenecks in the physical path and reduce the bandwidth cost. Using extensive simulations, we compared our results with those of the state-of-the-art algorithms. The experimental results show that our algorithms increase slice acceptance ratio and improve the provisioning revenue-to-cost ratio. 
    more » « less
  3. With the advent of Network Function Virtualization (NFV), Physical Network Functions (PNFs) are gradually being replaced by Virtual Network Functions (VNFs) that are hosted on general purpose servers. Depending on the call flows for specific services, the packets need to pass through an ordered set of network functions (physical or virtual) called Service Function Chains (SFC) before reaching the destination. Conceivably for the next few years during this transition, these networks would have a mix of PNFs and VNFs, which brings an interesting mix of network problems that are studied in this paper: (1) How to find an SFC-constrained shortest path between any pair of nodes? (2) What is the achievable SFC-constrained maximum flow? (3) How to place the VNFs such that the cost (the number of nodes to be virtualized) is minimized, while the maximum flow of the original network can still be achieved even under the SFC constraint? In this work, we will try to address such emerging questions. First, for the SFC-constrained shortest path problem, we propose a transformation of the network graph to minimize the computational complexity of subsequent applications of any shortest path algorithm. Second, we formulate the SFC-constrained maximum flow problem as a fractional multicommodity flow problem, and develop a combinatorial algorithm for a special case of practical interest. Third, we prove that the VNFs placement problem is NP-hard and present an alternative Integer Linear Programming (ILP) formulation. Finally, we conduct simulations to elucidate our theoretical results. 
    more » « less
  4. We aim to preserve a large amount of data generated insidebase station-less sensor networks(BSNs) while considering that sensor nodes are selfish. BSNs refer to emerging sensing applications deployed in challenging and inhospitable environments (e.g., underwater exploration); as such, there do not exist data-collecting base stations in the BSN to collect the data. Consequently, the generated data has to be stored inside the BSN before uploading opportunities become available. Our goal is to preserve the data inside the BSN with minimum energy cost by incentivizing the storage- and energy-constrained sensor nodes to participate in the data preservation process. We refer to the problem as DPP:datapreservationproblem in the BSN. Previous research assumes that all the sensor nodes are cooperative and that sensors have infinite battery power and design a minimum-cost flow-based data preservation solution. However, in a distributed setting and under different control, the resource-constrained sensor nodes could behave selfishly only to conserve their resources and maximize their benefit.

    In this article, we first solve DPP by designing an integer linear programming (ILP)-based optimal solution without considering selfishness. We then establish a game-theoretical framework that achieves provably truthful and optimal data preservation in BSNs. For a special case of DPP wherein nodes are not energy-constrained, referred to as DPP-W, we design a data preservation game DPG-1 that integrates algorithmic mechanism design (AMD) and a more efficient minimum cost flow-based data preservation solution. We show that DPG-1 yields dominant strategies for sensor nodes and delivers truthful and optimal data preservation. For the general case of DPP (wherein nodes are energy-constrained), however, DPG-1 fails to achieve truthful and optimal data preservation. Utilizing packet-level flow observation of sensor node behaviors computed by minimum cost flow and ILP, we uncover the cause of the failure of the DPG-1. It is due to the packet dropping by the selfish nodes that manipulate the AMD technique. We then design a data preservation game DPG-2 for DPP that traces and punishes manipulative nodes in the BSN. We show that DPG-2 delivers dominant strategies for truth-telling nodes and achieves provably optimal data preservation with cheat-proof guarantees. Via extensive simulations under different network parameters and dynamics, we show that our games achieve system-wide data preservation solutions with optimal energy cost while enforcing truth-telling of sensor nodes about their private cost types. One salient feature of our work is its integrated game theory and network flows approach. With the observation of flow level sensor node behaviors provided by the network flows, our proposed games can synthesize “microscopic” (i.e., selfish and local) behaviors of sensor nodes and yield targeted “macroscopic” (i.e., optimal and global) network performance of data preservation in the BSN.

    more » « less
  5. This paper addresses the problem of admission control for elastic network slices that may dynamically adjust provisioned bandwidth levels over time. When admitting new slice requests, sufficient spare capacity must be reserved to allow existing elastic slices to dynamically increase their bandwidth allocation when needed. We demonstrate a lightweight deep Reinforcement Learning (RL) model to intelligently make ad-mission control decisions for elastic slice requests and inelastic slice requests. This model achieves higher revenue and higher acceptance rates compared to traditional heuristic methods. Due to the lightness of this model, it can be deployed without GPUs. We can also use a relatively small amount of data to train the model and to achieve stable performance. Also, we introduce a Recurrent Neural Network to encode the variable-size environment and train the encoder with the RL model together. 
    more » « less