Abstract From California to British Columbia, the Pacific Northwest coast bears an omnipresent earthquake and tsunami hazard from the Cascadia subduction zone. Multiple lines of evidence suggests that magnitude eight and greater megathrust earthquakes have occurred ‐ the most recent being 321 years ago (i.e., 1700 A.D.). Outstanding questions for the next great megathrust event include where it will initiate, what conditions are favorable for rupture to span the convergent margin, and how much slip may be expected. We develop the first 3‐D fully dynamic rupture simulations for the Cascadia subduction zone that are driven by fault stress, strength and friction to address these questions. The initial dynamic stress drop distribution in our simulations is constrained by geodetic coupling models, with segment locations taken from geologic analyses. We document the sensitivity of nucleation location and stress drop to the final seismic moment and coseismic subsidence amplitudes. We find that the final earthquake size strongly depends on the amount of slip deficit in the central Cascadia region, which is inferred to be creeping interseismically, for a given initiation location in southern or northern Cascadia. Several simulations are also presented here that can closely approximate recorded coastal subsidence from the 1700 A.D. event without invoking localized high‐stress asperities along the down‐dip locked region of the megathrust. These results can be used to inform earthquake and tsunami hazards for not only Cascadia, but other subduction zones that have limited seismic observations but a wealth of geodetic inference.
more »
« less
How the Transition Region Along the Cascadia Megathrust Influences Coseismic Behavior: Insights From 2‐D Dynamic Rupture Simulations
Abstract There is a strong need to model potential rupture behaviors for the next Cascadia megathrust earthquake. However, there exists significant uncertainty regarding the extent of downdip rupture and rupture speed. To address this problem, we study how the transition region (i.e., the gap), which separates the locked from slow‐slip regions, influences coseismic rupture propagation using 2‐D dynamic rupture simulations governed by a slip‐weakening friction law. We show that rupture propagation through the gap is strongly controlled by the amount of accumulated tectonic initial shear stress and gap friction level. A large amplitude negative dynamic stress drop is needed to arrest downdip rupture. We also observe downdip supershear rupture when the gradient in effective normal stress from the locked to slow‐slip regions is dramatic. Our results justify kinematic rupture models that extend below the gap and suggests the possibility of high‐frequency energy radiation during the next Cascadia megathrust earthquake.
more »
« less
- Award ID(s):
- 1663769
- PAR ID:
- 10371665
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 46
- Issue:
- 4
- ISSN:
- 0094-8276
- Page Range / eLocation ID:
- p. 1973-1983
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Interseismic coupling maps and, especially, estimates of the location of the fully coupled (locked) zone relative to the trench, coastline, and slow slip events are crucial for determining megathrust earthquake hazard at subduction zones. We present an interseismic coupling inversion that estimates the locations of the upper and lower boundaries of the locked zone, the lower boundary of the deep transition zone, and downdip gradient of creep rate in the transition from locked to freely creeping in the downdip transition zone. We show that the locked zone at Cascadia is west of the coastline and 10 km updip of the slow slip zone along much of the margin, widest (25–125 km, extending to ∼19 km depth) in northern Cascadia, narrowest (0–70 km) in central Cascadia, with moment accumulation rate equivalent to a Mw8.71 and Mw8.85 earthquake for 300‐ and 500‐year earthquake cycles. We find a steep gradient in creep immediately below the locked zone, indicative of propagating creep, along the entire margin. At Nankai, we find three distinct zones of locking (offshore Shikoku, offshore southeast Kii peninsula, and offshore Shima peninsula) with a total moment accumulation rate equivalent to a Mw8.70 earthquake for a 150‐year earthquake cycle. The bottom of the locked zone is nearly under the coastline for all three locked regions at Nankai and is positioned 0–5 km updip of the slow slip zone. In contrast with Cascadia, creep rate gradients below the locked zone at Nankai are generally gradual, consistent with stationary locking.more » « less
-
Abstract Subduction zones host some of Earth's most damaging natural hazards, including megathrust earthquakes and earthquake‐induced tsunamis. A major control on the initiation and rupture characteristics of subduction megathrust earthquakes is how the coupled zone along the subduction interface accumulates elastic strain between events. We present results from observations of slow slip events (SSEs) in Cascadia occurring during the interseismic period downdip of the fully coupled zone, which imply that the orientation of strain accumulation within the coupled zone can vary with depth. Interseismic GPS motions suggest that forces derived from relative plate motions across a shallow, offshore locked plate interface dominate over decadal timescales. Deeper on the plate interface, below the locked (seismogenic) patch, slip during SSEs dominantly occurs in the updip direction, reflecting a dip‐parallel force acting on the slab, such as slab pull. This implies that in subduction zones with obliquely convergent plate motions, the seismogenic zone of the megathrust is loaded by forces acting in two discrete directions, leading to a depth‐varying orientation of strain accumulation on the plate interface.more » « less
-
Abstract Megathrust earthquakes are the largest on Earth, capable of causing strong ground shaking and generating tsunamis. Physical models used to understand megathrust earthquake hazard are limited by existing uncertainties about material properties and governing processes in subduction zones. A key quantity in megathrust hazard assessment is the distance between the updip and downdip rupture limits. The thermal structure of a subduction zone exerts a first‐order control on the extent of rupture. We simulate temperature for profiles of the Cascadia, Nankai and Hikurangi subduction zones using a 2D coupled kinematic‐dynamic thermal model. We then build reduced‐order models (ROMs) for temperature using the interpolated Proper Orthogonal Decomposition (iPOD). The resulting ROMs are data‐driven, model agnostic, and computationally cheap to evaluate. Using the ROMs, we can efficiently investigate the sensitivity of temperature to input parameters, physical processes, and modeling choices. We find that temperature, and by extension the potential rupture extent, is most sensitive to variability in parameters that describe shear heating on the slab interface, followed by parameters controlling the thermal structure of the incoming lithosphere and coupling between the slab and the mantle. We quantify the effect of using steady‐state versus time‐dependent models, and of uncertainty in the choice of isotherm representing the downdip rupture limit. We show that variability in input parameters translates to significant differences in estimated moment magnitude. Our analysis highlights the strong effect of variability in the apparent coefficient of friction, with previously published ranges resulting in pronounced variability in estimated rupture limit depths.more » « less
-
Abstract Slow slip events (SSEs) have been observed in spatial and temporal proximity to megathrust earthquakes in various subduction zones, including the 2014Mw7.3 Guerrero, Mexico earthquake which was preceded by aMw7.6 SSE. However, the underlying physics connecting SSEs to earthquakes remains elusive. Here, we link 3D slow‐slip cycle models with dynamic rupture simulations across the geometrically complex flat‐slab Cocos plate boundary. Our physics‐based models reproduce key regional geodetic and teleseismic fault slip observations on timescales from decades to seconds. We find that accelerating SSE fronts transiently increase shear stress at the down‐dip end of the seismogenic zone, modulated by the complex geometry beneath the Guerrero segment. The shear stresses cast by the migrating fronts of the 2014Mw7.6 SSE are significantly larger than those during the three previous episodic SSEs that occurred along the same portion of the megathrust. We show that the SSE transient stresses are large enough to nucleate earthquake dynamic rupture and affect rupture dynamics. However, additional frictional asperities in the seismogenic part of the megathrust are required to explain the observed complexities in the coseismic energy release and static surface displacements of the Guerrero earthquake. We conclude that it is crucial to jointly analyze the long‐ and short‐term interactions and complexities of SSEs and megathrust earthquakes across several (a)seismic cycles accounting for megathrust geometry. Our study has important implications for identifying earthquake precursors and understanding the link between transient and sudden megathrust faulting processes.more » « less
An official website of the United States government
