skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Large numbers cause magnitude neglect: The case of government expenditures
Four studies demonstrate that the public’s understanding of government budgetary expenditures is hampered by difficulty in representing large numerical magnitudes. Despite orders of magnitude difference between millions and billions, study participants struggle with the budgetary magnitudes of government programs. When numerical values are rescaled as smaller magnitudes (in the thousands or lower), lay understanding improves, as indicated by greater sensitivity to numerical ratios and more accurate rank ordering of expenses. A robust benefit of numerical rescaling is demonstrated across a variety of experimental designs, including policy relevant choices and incentive-compatible accuracy measures. This improved sensitivity ultimately impacts funding choices and public perception of respective budgets, indicating the importance of numerical cognition for good citizenship.  more » « less
Award ID(s):
2017651 1851702
PAR ID:
10371701
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
28
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This paper studies the political determinants of inequalities in government interventions under majoritarian (MAJ) and proportional representation (PR) systems. We propose a probabilistic voting model of electoral competition with highly targetable government interventions and heterogeneous localities. We uncover a novel relative electoral sensitivity effect that affects government interventions only under MAJ systems. This effect tends to reduce inequality in government interventions under MAJ systems when districts are composed of sufficiently homogeneous localities. This effect goes against the conventional wisdom that MAJ systems are necessarily more conducive to inequality than PR systems. We illustrate the empirical relevance of our results with numerical simulations on possible reforms of the US Electoral College. 
    more » « less
  2. One‐shot revenue shocks influence government budget decisions and service provision. However, how governments respond to transitory income remains a theoretical and empirical puzzle. The permanent income hypothesis posits that governments save windfalls to smooth expenditures, while other models predict spending increases. Empirical findings are inconclusive as the focus has been on revenues that are not truly transitory. The case of special and extraordinary gains allows us to investigate the effects of transitory resources. Taking advantage of the Governmental Accounting Standards Board's requirement that governments report such gains in their financial statements, this study examines the effects of gains on expenses for a sample of cities across 10 years. Using a staggered adoption event study design, we find that gains stimulate spending and that the size of gains matters before one observes the stimulatory effects. These results have substantial implications for budgetary transparency and fiscal sustainability in municipal governments. 
    more » « less
  3. Abstract Whether and how the brain encodes discrete numerical magnitude differently from continuous nonnumerical magnitude is hotly debated. In a previous set of studies, we orthogonally varied numerical (numerosity) and nonnumerical (size and spacing) dimensions of dot arrays and demonstrated a strong modulation of early visual evoked potentials (VEPs) by numerosity and not by nonnumerical dimensions. Although very little is known about the brain's response to systematic changes in continuous dimensions of a dot array, some authors intuit that the visual processing stream must be more sensitive to continuous magnitude information than to numerosity. To address this possibility, we measured VEPs of participants viewing dot arrays that changed exclusively in one nonnumerical magnitude dimension at a time (size or spacing) while holding numerosity constant and compared this to a condition where numerosity was changed while holding size and spacing constant. We found reliable but small neural sensitivity to exclusive changes in size and spacing; however, exclusively changing numerosity elicited a much more robust modulation of the VEPs. Together with previous work, these findings suggest that sensitivity to magnitude dimensions in early visual cortex is context dependent: The brain is moderately sensitive to changes in size and spacing when numerosity is held constant, but sensitivity to these continuous variables diminishes to a negligible level when numerosity is allowed to vary at the same time. Neurophysiological explanations for the encoding and context dependency of numerical and nonnumerical magnitudes are proposed within the framework of neuronal normalization. 
    more » « less
  4. Abstract Climate change impacts threaten the stability of the US housing market. In response to growing concerns that increasing costs of flooding are not fully captured in property values, we quantify the magnitude of unpriced flood risk in the housing market by comparing the empirical and economically efficient prices for properties at risk. We find that residential properties exposed to flood risk are overvalued by US$121–US$237 billion, depending on the discount rate. In general, highly overvalued properties are concentrated in counties along the coast with no flood risk disclosure laws and where there is less concern about climate change. Low-income households are at greater risk of losing home equity from price deflation, and municipalities that are heavily reliant on property taxes for revenue are vulnerable to budgetary shortfalls. The consequences of these financial risks will depend on policy choices that influence who bears the costs of climate change. 
    more » « less
  5. Abstract We present a new ensemble of 36 numerical experiments aimed at comprehensively gauging the sensitivity of nested large-eddy simulations (LES) driven by large-scale dynamics. Specifically, we explore 36 multiscale configurations of the Weather Research and Forecasting (WRF) Model to simulate the boundary layer flow over the complex topography at the Perdigão field site, with five nested domains discretized at horizontal resolutions ranging from 11.25 km to 30 m. Each ensemble member has a unique combination of the following input factors: (i) large-scale initial and boundary conditions, (ii) subgrid turbulence modeling in thegray zoneof turbulence, (iii) subgrid-scale (SGS) models in LES, and (iv) topography and land-cover datasets. We probe their relative importance for LES calculations of velocity, temperature, and moisture fields. Variance decomposition analysis unravels large sensitivities to topography and land-use datasets and very weak sensitivity to the LES SGS model. Discrepancies within ensemble members can be as large as 2.5 m s−1for the time-averaged near-surface wind speed on the ridge and as large as 10 m s−1without time averaging. At specific time points, a large fraction of this sensitivity can be explained by the different turbulence models in the gray zone domains. We implement a horizontal momentum and moisture budget routine in WRF to further elucidate the mechanisms behind the observed sensitivity, paving the way for an increased understanding of the tangible effects of the gray zone of turbulence problem. Significance StatementSeveral science and engineering applications, including wind turbine siting and operations, weather prediction, and downscaling of climate projections, call for high-resolution numerical simulations of the lowest part of the atmosphere. Recent studies have highlighted that such high-resolution simulations, coupled with large-scale models, are challenging and require several important assumptions. With a new set of numerical experiments, we evaluate and compare the significance of different assumptions and outstanding challenges in multiscale modeling (i.e., coupling large-scale models and high-resolution atmospheric simulations). The ultimate goal of this analysis is to put each individual assumption into the wider perspective of a realistic problem and quantify its relative importance compared to other important modeling choices. 
    more » « less