skip to main content


Title: Evidence of galaxy assembly bias in SDSS DR7 galaxy samples from count statistics
ABSTRACT

We present observational constraints on the galaxy–halo connection, focusing particularly on galaxy assembly bias from a novel combination of counts-in-cylinders statistics, P(NCIC), with the standard measurements of the projected two-point correlation function wp(rp), and number density ngal of galaxies. We measure ngal, wp(rp), and P(NCIC) for volume-limited, luminosity-threshold samples of galaxies selected from SDSS DR7, and use them to constrain halo occupation distribution (HOD) models, including a model in which galaxy occupation depends upon a secondary halo property, namely halo concentration. We detect significant positive central assembly bias for the Mr < −20.0 and Mr < −19.5 samples. Central galaxies preferentially reside within haloes of high concentration at fixed mass. Positive central assembly bias is also favoured in the Mr < −20.5 and Mr < −19.0 samples. We find no evidence of central assembly bias in the Mr < −21.0 sample. We observe only a marginal preference for negative satellite assembly bias in the Mr < −20.0 and Mr < −19.0 samples, and non-zero satellite assembly bias is not indicated in other samples. Our findings underscore the necessity of accounting for galaxy assembly bias when interpreting galaxy survey data, and demonstrate the potential of count statistics in extracting information from the spatial distribution of galaxies, which could be applied to both galaxy–halo connection studies and cosmological analyses.

 
more » « less
NSF-PAR ID:
10371870
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
516
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
p. 4003-4024
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This paper represents an effort to provide robust constraints on the galaxy–halo connection and simultaneously test the Planck ΛCDM cosmology using a fully numerical model of small-scale galaxy clustering. We explore two extensions to the standard Halo Occupation Distribution model: assembly bias, whereby halo occupation depends on both halo mass and the larger environment, and velocity bias, whereby galaxy velocities do not perfectly trace the velocity of the dark matter within the halo. Moreover, we incorporate halo mass corrections to account for the impact of baryonic physics on the halo population. We identify an optimal set of clustering measurements to constrain this “decorated” HOD model for both low- and high-luminosity galaxies in SDSS DR7. We find that, for low-luminosity galaxies, a model with both assembly bias and velocity bias provides the best fit to the clustering measurements, with no tension remaining in the fit. In this model, we find evidence for both central and satellite galaxy assembly bias at the 99% and 95% confidence levels, respectively. In addition, we find evidence for satellite galaxy velocity bias at the 99.9% confidence level. For high-luminosity galaxies, we find no evidence for either assembly bias or velocity bias, but our model exhibits significant tension with SDSS measurements. We find that all of these conclusions still stand when we include the effects of baryonic physics on the halo mass function, suggesting that the tension we find for high-luminosity galaxies may be due to a problem with our assumed cosmological model.

     
    more » « less
  2. ABSTRACT

    We employ the hydrodynamical simulation illustrisTNG to inform the galaxy–halo connection of the Luminous Red Galaxy (LRG) and Emission Line Galaxy (ELG) samples of the Dark Energy Spectroscopic Instrument (DESI) survey at redshift z ∼ 0.8. Specifically, we model the galaxy colours of illustrisTNG and apply sliding DESI colour–magnitude cuts, matching the DESI target densities. We study the halo occupation distribution (HOD) model of the selected samples by matching them to their corresponding dark matter haloes in the illustrisTNG dark matter run. We find the HOD of both the LRG and ELG samples to be consistent with their respective baseline models, but also we find important deviations from common assumptions about the satellite distribution, velocity bias, and galaxy secondary biases. We identify strong evidence for concentration-based and environment-based occupational variance in both samples, an effect known as ‘galaxy assembly bias’. The central and satellite galaxies have distinct dependencies on secondary halo properties, showing that centrals and satellites have distinct evolutionary trajectories and should be modelled separately. These results serve to inform the necessary complexities in modelling galaxy–halo connection for DESI analyses and also prepare for building high-fidelity mock galaxies. Finally, we present a shuffling-based clustering analysis that reveals a 10–15 ${{\ \rm per\ cent}}$ excess in the LRG clustering of modest statistical significance due to secondary galaxy biases. We also find a similar excess signature for the ELGs, but with much lower statistical significance. When a larger hydrodynamical simulation volume becomes available, we expect our analysis pipeline to pinpoint the exact sources of such excess clustering signatures.

     
    more » « less
  3. Abstract

    We explore the galaxy-halo connection information that is available in low-redshift samples from the early data release of the Dark Energy Spectroscopic Instrument (DESI). We model the halo occupation distribution (HOD) fromz= 0.1 to 0.3 using Survey Validation 3 (SV3; a.k.a., the One-Percent Survey) data of the DESI Bright Galaxy Survey. In addition to more commonly used metrics, we incorporate counts-in-cylinders (CiC) measurements, which drastically tighten HOD constraints. Our analysis is aided by the Python package,galtab, which enables the rapid, precise prediction of CiC for any HOD model available inhalotools. This methodology allows our Markov chains to converge with much fewer trial points, and enables even more drastic speedups due to its GPU portability. Our HOD fits constrain characteristic halo masses tightly and provide statistical evidence for assembly bias, especially at lower luminosity thresholds: the HOD of central galaxies inz∼ 0.15 samples with limiting absolute magnitudeMr< −20.0 andMr< −20.5 samples is positively correlated with halo concentration with a significance of 99.9% and 99.5%, respectively. Our models also favor positive central assembly bias for the brighterMr< −21.0 sample atz∼ 0.25 (94.8% significance), but there is no significant evidence for assembly bias with the same luminosity threshold atz∼ 0.15. We provide our constraints for each threshold sample’s characteristic halo masses, assembly bias, and other HOD parameters. These constraints are expected to be significantly tightened with future DESI data, which will span an area 100 times larger than that of SV3.

     
    more » « less
  4. ABSTRACT

    The combination of galaxy–galaxy lensing (GGL) and galaxy clustering is a powerful probe of low-redshift matter clustering, especially if it is extended to the non-linear regime. To this end, we use an N-body and halo occupation distribution (HOD) emulator method to model the redMaGiC sample of colour-selected passive galaxies in the Dark Energy Survey (DES), adding parameters that describe central galaxy incompleteness, galaxy assembly bias, and a scale-independent multiplicative lensing bias Alens. We use this emulator to forecast cosmological constraints attainable from the GGL surface density profile ΔΣ(rp) and the projected galaxy correlation function wp, gg(rp) in the final (Year 6) DES data set over scales $r_p=0.3\!-\!30.0\, h^{-1} \, \mathrm{Mpc}$. For a $3{{\ \rm per\ cent}}$ prior on Alens we forecast precisions of $1.9{{\ \rm per\ cent}}$, $2.0{{\ \rm per\ cent}}$, and $1.9{{\ \rm per\ cent}}$ on Ωm, σ8, and $S_8 \equiv \sigma _8\Omega _m^{0.5}$, marginalized over all halo occupation distribution (HOD) parameters as well as Alens. Adding scales $r_p=0.3\!-\!3.0\, h^{-1} \, \mathrm{Mpc}$ improves the S8 precision by a factor of ∼1.6 relative to a large scale ($3.0\!-\!30.0\, h^{-1} \, \mathrm{Mpc}$) analysis, equivalent to increasing the survey area by a factor of ∼2.6. Sharpening the Alens prior to $1{{\ \rm per\ cent}}$ further improves the S8 precision to $1.1{{\ \rm per\ cent}}$, and it amplifies the gain from including non-linear scales. Our emulator achieves per cent-level accuracy similar to the projected DES statistical uncertainties, demonstrating the feasibility of a fully non-linear analysis. Obtaining precise parameter constraints from multiple galaxy types and from measurements that span linear and non-linear clustering offers many opportunities for internal cross-checks, which can diagnose systematics and demonstrate the robustness of cosmological results.

     
    more » « less
  5. ABSTRACT

    Approximate methods to populate dark-matter haloes with galaxies are of great utility to galaxy surveys. However, the limitations of simple halo occupation models (HODs) preclude a full use of small-scale galaxy clustering data and call for more sophisticated models. We study two galaxy populations, luminous red galaxies (LRGs) and star-forming emission-line galaxies (ELGs), at two epochs, z = 1 and z = 0, in the large-volume, high-resolution hydrodynamical simulation of the MillenniumTNG project. In a partner study we concentrated on the small-scale, one-halo regime down to r ∼ 0.1 h−1 Mpc, while here we focus on modelling galaxy assembly bias in the two-halo regime, r ≳ 1 h−1 Mpc. Interestingly, the ELG signal exhibits scale dependence out to relatively large scales (r ∼ 20 h−1 Mpc), implying that the linear bias approximation for this tracer is invalid on these scales, contrary to common assumptions. The 10–15 per cent discrepancy is only reconciled when we augment our halo occupation model with a dependence on extrinsic halo properties (‘shear’ being the best-performing one) rather than intrinsic ones (e.g. concentration, peak mass). We argue that this fact constitutes evidence for two-halo galaxy conformity. Including tertiary assembly bias (i.e. a property beyond mass and ‘shear’) is not an essential requirement for reconciling the galaxy assembly bias signal of LRGs, but the combination of external and internal properties is beneficial for recovering ELG the clustering. We find that centrals in low-mass haloes dominate the assembly bias signal of both populations. Finally, we explore the predictions of our model for higher order statistics such as nearest neighbour counts. The latter supplies additional information about galaxy assembly bias and can be used to break degeneracies between halo model parameters.

     
    more » « less