Abstract Lepidopteran wing scales play important roles in a number of functions including color patterning and thermoregulation. Despite the importance of wing scales, however, we still have a limited understanding of the genetic mechanisms that underlie scale patterning, development, and coloration. Here, we explore the function of the phenoloxidase‐encoding genelaccase2in wing and scale development in the nymphalid butterflyVanessa cardui. Somatic deletion mosaics oflaccase2generated by CRISPR/Cas9 genome editing presented several distinct mutant phenotypes. Consistent with the work in other nonlepidopteran insect groups, we observed reductions in melanin pigmentation and defects in cuticle formation. We were also surprised, however, to see distinct effects on scale development including complete loss of wing scales. This study highlightslaccase2as a gene that plays multiple roles in wing and scale development and provides new insight into the evolution of lepidopteran wing coloration.
more »
« less
Sub‐micrometer insights into the cytoskeletal dynamics and ultrastructural diversity of butterfly wing scales
ABSTRACT BackgroundThe color patterns that adorn lepidopteran wings are ideal for studying cell type diversity using a phenomics approach. Color patterns are made of chitinous scales that are each the product of a single precursor cell, offering a 2D system where phenotypic diversity can be studied cell by cell, both within and between species. Those scales reveal complex ultrastructures in the sub‐micrometer range that are often connected to a photonic function, including iridescent blues and greens, highly reflective whites, or light‐trapping blacks. ResultsWe found that during scale development, Fascin immunostainings reveal punctate distributions consistent with a role in the control of actin patterning. We quantified the cytoskeleton regularity as well as its relationship to chitin deposition sites, and confirmed a role in the patterning of the ultrastructures of the adults scales. Then, in an attempt to characterize the range and variation in lepidopteran scale ultrastructures, we devised a high‐throughput method to quickly derive multiple morphological measurements from fluorescence images and scanning electron micrographs. We imaged a multicolor eyespot element from the butterflyVanessa cardui(V. cardui), taking approximately 200 000 individual measurements from 1161 scales. Principal component analyses revealed that scale structural features cluster by color type, and detected the divergence of non‐reflective scales characterized by tighter cross‐rib distances and increased orderedness. ConclusionWe developed descriptive methods that advance the potential of butterfly wing scales as a model system for studying how a single cell type can differentiate into a multifaceted spectrum of complex morphologies. Our data suggest that specific color scales undergo a tight regulation of their ultrastructures, and that this involves cytoskeletal dynamics during scale growth.
more »
« less
- PAR ID:
- 10371901
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Developmental Dynamics
- Volume:
- 248
- Issue:
- 8
- ISSN:
- 1058-8388
- Format(s):
- Medium: X Size: p. 657-670
- Size(s):
- p. 657-670
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Evolutionary variation in the wing pigmentation of butterflies and moths offers striking examples of adaptation by crypsis and mimicry. Thecortexlocus has been independently mapped as the locus controlling color polymorphisms in 15 lepidopteran species, suggesting that it acts as a genomic hotspot for the diversification of wing patterns, but functional validation through protein-coding knockouts has proven difficult to obtain. Our study unveils the role of a long noncoding RNA (lncRNA) which we nameivory, transcribed from thecortexlocus, in modulating color patterning in butterflies. Strikingly,ivoryexpression prefigures most melanic patterns during pupal development, suggesting an early developmental role in specifying scale identity. To test this, we generated CRISPR mosaic knock-outs in five nymphalid butterfly species and show thativorymutagenesis yields transformations of dark pigmented scales into white or light-colored scales. Genotyping ofVanessa carduigermline mutants associates these phenotypes to small on-target deletions at the conserved first exon ofivory. In contrast,cortexgermline mutant butterflies with confirmed null alleles lack any wing phenotype and exclude a color patterning role for this adjacent gene. Overall, these results show that a lncRNA gene acts as a master switch of color pattern specification and played key roles in the adaptive diversification of wing patterns in butterflies.more » « less
-
null (Ed.)The forewings and hindwings of butterflies and moths (Lepidoptera) are differentiated from each other, with segment-specific morphologies and color patterns that mediate a wide range of functions in flight, signaling, and protection. The Hox gene Ultrabithorax ( Ubx ) is a master selector gene that differentiates metathoracic from mesothoracic identities across winged insects, and previous work has shown this role extends to at least some of the color patterns from the butterfly hindwing. Here we used CRISPR targeted mutagenesis to generate Ubx loss-of-function somatic mutations in two nymphalid butterflies ( Junonia coenia , Vanessa cardui ) and a pyralid moth ( Plodia interpunctella ). The resulting mosaic clones yielded hindwing-to-forewing transformations, showing Ubx is necessary for specifying many aspects of hindwing-specific identities, including scale morphologies, color patterns, and wing venation and structure. These homeotic phenotypes showed cell-autonomous, sharp transitions between mutant and non-mutant scales, except for clones that encroached into the border ocelli (eyespots) and resulted in composite and non-autonomous effects on eyespot ring determination. In the pyralid moth, homeotic clones converted the folding and depigmented hindwing into rigid and pigmented composites, affected the wing-coupling frenulum, and induced ectopic scent-scales in male androconia. These data confirm Ubx is a master selector of lepidopteran hindwing identity and suggest it acts on many gene regulatory networks involved in wing development and patterning.more » « less
-
ABSTRACT The success of butterflies and moths is tightly linked to the origin of scales within the group. A long-standing hypothesis postulates that scales are homologous to the well-described mechanosensory bristles found in the fruit fly Drosophila melanogaster, as both derive from an epithelial precursor. Previous histological and candidate gene approaches identified parallels in genes involved in scale and bristle development. Here, we provide developmental and transcriptomic evidence that the differentiation of lepidopteran scales derives from the sensory organ precursor (SOP). Live imaging in lepidopteran pupae shows that SOP cells undergo two asymmetric divisions that first abrogate the neurogenic lineage, and then lead to a differentiated scale precursor and its associated socket cell. Single-nucleus RNA sequencing using early pupal wings revealed differential gene expression patterns that mirror SOP development, suggesting a shared developmental program. Additionally, we recovered a newly associated gene, the transcription factor pdm3, involved in the proper differentiation of butterfly wing scales. Altogether, these data open up avenues for understanding scale type specification and development, and illustrate how single-cell transcriptomics provide a powerful platform for understanding evolution of cell types.more » « less
-
Butterfly color patterns provide visible and biodiverse phenotypic readouts of the patterning processes. While the secreted ligand WntA was shown to instruct the color pattern formation in butterflies, its mode of reception remains elusive. Butterfly genomes encode four homologues of the Frizzled-family of Wnt receptors. Here we show that CRISPR mosaic knock-outs of frizzled2 (fz2) phenocopy the color pattern effects of WntA loss-of-function in multiple nymphalids. While WntA mosaic clones result in intermediate patterns of reduced size, fz2 clones are cell-autonomous, consistent with a morphogen function. Shifts in expression of WntA and fz2 in WntA crispant pupae show that they are under positive and negative feedback, respectively. Fz1 is required for Wnt-independent planar cell polarity (PCP) in the wing epithelium. Fz3 and Fz4 show phenotypes consistent with Wnt competitive-antagonist functions in vein formation (Fz3 and Fz4), wing margin specification (Fz3), and color patterning in the Discalis and Marginal Band Systems (Fz4). Overall, these data show that the WntA/Frizzled2 morphogen-receptor pair forms a signaling axis that instructs butterfly color patterning, and shed light on the functional diversity of insect Frizzled receptors.more » « less
An official website of the United States government
