Abstract Channel planform patterns arise from internal dynamics of sediment transport and fluid flow in rivers and are affected by external controls such as valley confinement. Understanding whether these channel patterns are preserved in the rock record has critical implications for our ability to constrain past environmental conditions. Rivers are preserved as channel belts, which are one of the most ubiquitous and accessible parts of the sedimentary record, yet the relationship between river and channel-belt planform patterns remains unquantified. We analyzed planform patterns of rivers and channel belts from 30 systems globally. Channel patterns were classified using a graph theory-based metric, the Entropic Braided Index (eBI), which quantifies the number of river channels by considering the partitioning of water and sediment discharge. We find that, after normalizing by river size, channel-belt width and wavelength, amplitude, and curvature of the belt edges decrease with increasing river channel number (eBI). Active flow in single-channel rivers occupies as little as 1% of the channel belt, while in multichannel rivers it can occupy >50% of the channel belt. Moreover, we find that channel patterns lie along a continuum of channel numbers. Our findings have implications for studies on river and floodplain interaction, storage timescales of floodplain sediment, and paleoenvironmental reconstruction.
more »
« less
The Entropic Braiding Index ( eBI ): A Robust Metric to Account for the Diversity of Channel Scales in Multi‐Thread Rivers
Abstract The Braiding Index (BI), defined as the average count of intercepted channels per cross‐section, is a widely used metric for characterizing multi‐thread river systems. However, it does not account for the diversity of channels (e.g., in terms of water discharge) within different cross‐sections, omitting important information related to system complexity. Here we present a modification ofBI,the Entropic Braiding Index (eBI), which augments the information content inBIby using Shannon Entropy to encode the diversity of channels in each cross section.eBIis interpreted as the number of “effective channels” per cross‐section, allowing a direct comparison with the traditionalBI. We demonstrate the potential of the ratioBI/eBIto quantify channel disparity, differentiate types of multi‐thread systems (braided vs. anastomosed), and assess the effect of discharge variability, such as seasonal flooding, on river cross‐section stability.
more »
« less
- PAR ID:
- 10371920
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 49
- Issue:
- 16
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Amazon River mobilizes organic carbon across one of the world's largest terrestrial carbon reservoirs. Quantifying the sources of particulate organic carbon (POC) to this flux is typically challenging in large systems such as the Amazon River due to hydrodynamic sorting of sediments. Here, we analyze the composition of POC collected from multiple total suspended sediment (TSS) profiles in the mainstem at Óbidos, and surface samples from the Madeira, Solimões and Tapajós Rivers. As hypothesized, TSS and POC concentrations in the mainstem increased with depth and fit well to Rouse models for sediment sorting by grain size. Coupling these profiles with Acoustic Doppler Current Profiler discharge data, we estimate a large decrease in POC flux (from 540 to 370 kg per second) between the rising and falling stages of the Amazon River mainstem. The C/N ratio and stable and radiocarbon signatures of bulk POC are less variable within the cross‐section at Óbidos and suggest that riverine POC in the Amazon River is predominantly soil‐derived. However, smaller shifts in these compositional metrics with depth, including leaf waxn‐alkanes and fatty acids, are consistent with the perspective that deeper and larger particles carry fresher, less degraded organic matter sources (i.e., vegetation debris) through the mainstem. Overall, our cross‐sectional surveys at Óbidos highlight the importance of depth‐specific sampling for estimating riverine export fluxes. At the same time, they imply that this approach to sampling is perhaps less essential with respect to characterizing the composition of POC sources exported by the river.more » « less
-
Variable‐angle spectroscopic ellipsometry is used to determine the room temperature complex refractive index of molecular beam epitaxy grown GaSb1−xBixfilms withx ≤ 4.25% over a spectral range of 0.47–6.2 eV. By correlating to critical points in the extinction coefficientk, the energies of several interband transitions are extracted as functions of Bi content. The observed change in the fundamental bandgap energy (E0, −36.5 meV per %Bi) agrees well with previously published values; however, the samples examined here show a much more rapid increase in the spin‐orbit splitting energy (Δ0, +30.1 meV per Bi) than previous calculations have predicted. As in the related GaAsBi, the energy of transitions involving the top of the valence band are observed to have a much stronger dependence on Bi content than those that do not, suggesting the valence band maximum is most sensitive to Bi alloying. Finally, the effects of surface droplets on both the complex refractive index and the critical point energies are examined.more » « less
-
Salt marshes play a crucial role in coastal biogeochemical cycles and provide unique ecosystem services. Salt marsh biomass, which can strongly influence such services, varies over time in response to hydrologic conditions and other environmental drivers. We used gap-filled monthly observations ofSpartina alternifloraaboveground biomass derived from Landsat 5 and Landsat 8 satellite imagery from 1984-2018 to analyze temporal patterns in biomass in comparison to air temperature, precipitation, river discharge, nutrient input, sea level, and drought index for a southeastern US salt marsh. Wavelet analysis and ensemble empirical mode decomposition identified month to multi-year periodicities in both plant biomass and environmental drivers. Wavelet coherence detected cross-correlations between annual biomass cycles and precipitation, temperature, river discharge, nutrient concentrations (NOxand PO43–) and sea level. At longer periods we detected coherence between biomass and all variables except precipitation. Through empirical dynamic modeling we showed that temperature, river discharge, drought, sea level, and river nutrient concentrations were causally connected to salt marsh biomass and exceeded the confounding effect of seasonality. This study demonstrated the insights into biomass dynamics and causal connections that can be gained through the analysis of long-term data.more » « less
-
Abstract Riverbank groundwater discharge faces are spatially extensive areas of preferential seepage that are exposed to air at low river flow. Some conceptual hydrologic models indicate discharge faces represent the spatial convergence of highly variable age and length groundwater flowpaths, while others indicate greater consistency in source groundwater characteristics. Our detailed field investigation of preferential discharge points nested across mainstem riverbank discharge faces was accomplished by: (1) leveraging new temperature‐based recursive estimation (extended Kalman Filter) modelling methodology to evaluate seasonal, diurnal, and event‐driven groundwater flux patterns, (2) developing a multi‐parameter toolkit based on readily measured attributes to classify the general source groundwater flowpath depth and flowpath length scale, and, (3) assessing whether preferential flow points across discharge faces tend to represent common or convergent groundwater sources. Five major groundwater discharge faces were mapped along the Farmington River, CT, United States using thermal infrared imagery. We then installed vertical temperature profilers directly into 39 preferential discharge points for 4.5 months to track vertical discharge flux patterns. Monthly water chemistry was also collected at the discharge points along with one spatial synoptic of stable isotopes of water and dissolved radon gas. We found pervasive evidence of shallow groundwater sources at the upstream discharge faces along a wide valley section with deep bedrock, as primarily evidenced by pronounced diurnal discharge flux patterns. Discharge flux seasonal trends and bank storage transitions during large river flow events provided further indication of shallow, local sources. In contrast, downstream discharge faces associated with near surface cross cutting bedrock exhibited deep and regional source flowpath characteristics such as more stable discharge patterns and temperatures. However, many neighbouring points across discharge faces had similar discharge flux patterns that differed in chloride and radon concentrations, indicating the additional effects of localized flowpath heterogeneity overprinting on larger scale flowpath characteristics.more » « less
An official website of the United States government
