Abstract Materials with tunable infrared refractive index changes have enabled active metasurfaces for novel control of optical circuits, thermal radiation, and more. Ion‐gel‐gated epitaxial films of the perovskite cobaltite La1−xSrxCoO3−δ(LSCO) with 0.00 ≤x≤ 0.70 offer a new route to significant, voltage‐tuned, nonvolatile refractive index modulation for infrared active metasurfaces, shown here through Kramers–Kronig‐consistent dispersion models, structural and electronic transport characterization, and electromagnetic simulations before and after electrochemical reduction. As‐grown perovskite films are high‐index insulators forx< 0.18 but lossy metals forx> 0.18, due to a percolation insulator‐metal transition. Positive‐voltage gating of LSCO transistors withx> 0.18 reveals a metal‐insulator transition from the metallic perovskite phase to a high‐index (n> 2.5), low‐loss insulating phase, accompanied by a perovskite to oxygen‐vacancy‐ordered brownmillerite transformation at highx. Atx< 0.18, despite nominally insulating character, the LSCO films undergo remarkable refractive index changes to another lower‐index, lower‐loss insulating perovskite state with Δn >0.6. In simulations of plasmonic metasurfaces, these metal‐insulator and insulator‐insulator transitions support significant, varied mid‐infrared reflectance modulation, thus framing electrochemically gated LSCO as a diverse library of room‐temperature phase‐change materials for applications including dynamic thermal imaging, camouflage, and optical memories.
more »
« less
Determination of the Complex Refractive Index of GaSb 1−x Bi x by Variable‐Angle Spectroscopic Ellipsometry
Variable‐angle spectroscopic ellipsometry is used to determine the room temperature complex refractive index of molecular beam epitaxy grown GaSb1−xBixfilms withx ≤ 4.25% over a spectral range of 0.47–6.2 eV. By correlating to critical points in the extinction coefficientk, the energies of several interband transitions are extracted as functions of Bi content. The observed change in the fundamental bandgap energy (E0, −36.5 meV per %Bi) agrees well with previously published values; however, the samples examined here show a much more rapid increase in the spin‐orbit splitting energy (Δ0, +30.1 meV per Bi) than previous calculations have predicted. As in the related GaAsBi, the energy of transitions involving the top of the valence band are observed to have a much stronger dependence on Bi content than those that do not, suggesting the valence band maximum is most sensitive to Bi alloying. Finally, the effects of surface droplets on both the complex refractive index and the critical point energies are examined.
more »
« less
- Award ID(s):
- 2120568
- PAR ID:
- 10526295
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- physica status solidi (a)
- Volume:
- 221
- Issue:
- 16
- ISSN:
- 1862-6300
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Mueller matrix spectroscopic ellipsometry is applied to determine anisotropic optical properties for a set of single-crystal rhombohedral structure α-(Al x Ga 1− x ) 2 O 3 thin films (0 [Formula: see text] x [Formula: see text] 1). Samples are grown by plasma-assisted molecular beam epitaxy on m-plane sapphire. A critical-point model is used to render a spectroscopic model dielectric function tensor and to determine direct electronic band-to-band transition parameters, including the direction dependent two lowest-photon energy band-to-band transitions associated with the anisotropic bandgap. We obtain the composition dependence of the direction dependent two lowest band-to-band transitions with separate bandgap bowing parameters associated with the perpendicular ([Formula: see text] = 1.31 eV) and parallel ([Formula: see text] = 1.61 eV) electric field polarization to the lattice c direction. Our density functional theory calculations indicate a transition from indirect to direct characteristics between α-Ga 2 O 3 and α-Al 2 O 3 , respectively, and we identify a switch in band order where the lowest band-to-band transition occurs with polarization perpendicular to c in α-Ga 2 O 3 whereas for α-Al 2 O 3 the lowest transition occurs with polarization parallel to c. We estimate that the change in band order occurs at approximately 40% Al content. Additionally, the characteristic of the lowest energy critical point transition for polarization parallel to c changes from M 1 type in α-Ga 2 O 3 to M 0 type van Hove singularity in α-Al 2 O 3 .more » « less
-
Abstract MXenes, a new class of 2D transition metal carbides, nitrides, and carbonitrides, have attracted much attention due to their outstanding properties. Here, we report the broadband spatial self‐phase modulation of Ti2CTxMXene nanosheets dispersed in deionized water in the visible to near‐infrared regime, highlighting the broadband nonlinear optical (NLO) response of Ti2CTxMXene. Using ultrafast pulsed laser excitation, the nonlinear refractive indexn2and the third‐order nonlinear susceptibilityof Ti2CTxMXene were measured to be ∼10−13m2/W and ∼ 10−10esu, respectively. Leveraging the large optical nonlinearity of Ti2CTxMXene, an all‐optical modulator in the visible regime was fabricated based on the spatial cross‐phase modulation effect. This work suggests that 2D MXenes are ideal broadband NLO materials with excellent prospects in NLO applications. imagemore » « less
-
The dissociation of the CNHicomplex in GaN is studied in detail using photoluminescence measurements and first‐principles calculations. The blue luminescence (BL2) band with a maximum at 3.0 eV is caused by electron transitions from an excited state located at 0.02 eV below the conduction band to the ground state of the CNHidonor with the 0/+ level 0.15 eV above the valence band. The dissociation releases hydrogen atom, and the remaining CNdefect with the −/0 state at 0.92 eV above the valence band is responsible for the yellow band (YL1) with a maximum at about 2.2 eV. The dissociation of the CNHicomplex can be caused by the photoinduced defect reaction mechanism under UV illumination at low temperature (≈20 K), leading to the bleaching of the BL2 band and simultaneous rise in the YL1 band. The bleaching is reversible. Alternatively, the complex dissociates after annealing at temperatures above 600 °C. The activation energy of this process (3–4 eV, depending on the annealing geometry) corresponds to the removal of hydrogen from the sample and not to the dissociation of the complex itself.more » « less
-
Abstract Electromagnetic ion cyclotron (EMIC) waves are known to be efficient for precipitating >1 MeV electrons from the magnetosphere into the upper atmosphere. Despite considerable evidence showing that EMIC‐driven electron precipitation can extend down to sub‐MeV energies, the precise physical mechanism driving sub‐MeV electron precipitation remains an active area of investigation. In this study, we present an electron precipitation event observed by ELFIN CubeSats on 11 January 2022, exclusively at sub‐MeV energy atL ∼ 8–10.5, where trapped MeV electrons were nearly absent. The THEMIS satellites observed conjugate H‐band and He‐band EMIC waves and hiss waves in plasmaspheric plumes near the magnetic equator. Quasi‐linear diffusion results demonstrate that the observed He‐band EMIC waves, with a high ratio of plasma to electron cyclotron frequency, can drive electron precipitation down to ∼400 keV. Our findings suggest that exclusive sub‐MeV precipitation (without concurrent MeV precipitation) can be associated with EMIC waves, especially in the plume region at highLshells.more » « less
An official website of the United States government
