skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Perovskite Photocatalytic CO 2 Reduction or Photoredox Organic Transformation?
Abstract Metal‐halide perovskites have been explored as photocatalysts for CO2reduction. We report that perovskite photocatalytic CO2reduction in organic solvents is likely problematic. Instead, the detected products (i.e., CO) likely result from a photoredox organic transformation involving the solvent. Our observations have been validated using isotopic labeling experiments, band energy analysis, and new control experiments. We designed a typical perovskite photocatalytic setup in organic solvents that led to CO production of up to ≈1000 μmol g−1 h−1. CO2reduction in organic solvents must be studied with extra care because photoredox organic transformations can produce orders of magnitude higher rate of CO or CH4than is typical for CO2reduction routes. Though CO2reduction is not likely to occur, in situ CO generation is extremely fast. Hence a suitable system can be established for challenging organic reactions that use CO as a feedstock but exploit the solvent as a CO surrogate.  more » « less
Award ID(s):
2140261
PAR ID:
10371936
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
61
Issue:
39
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Diffusion‐limited kinetics is a key mechanistic debate when consecutive photoelectron transfer (conPET) is discussed in photoredox catalysis. In situ generated organic photoactive radicals can access catalytic systems as reducing as alkaline metals that can activate remarkably stable bonds. However, in many cases, the extremely short‐lived transient nature of these doublet state open‐shell species has led to debatable mechanistic studies, hindering adoption and development. Herein, we document the use of an isolated and stable neutral organicnPrDMQA radical as a highly photoreducing species. The isolated radical offers a unique platform to investigate the mechanism behind the photocatalytic activity of organic photocatalyst radicals. The involvement of reduced solvent is observed, formed by single electron transfer (SET) between the short‐lived excited statenPrDMQA radical and the solvent. In our detailed mechanistic studies, spectroscopic and chemical affirmation of solvent reduction is strongly evident. Reduction of aryl halides, including difluoroarenes is presented as a model study of the conPET method. Further, the activation of N2O, a greenhouse gas that is yet to be activated by photoredox catalysis, is showcased in the absence of a transition metal. 
    more » « less
  2. Abstract Visible‐light‐induced halide‐exchange between halide perovskite and organohalide solvents has been studied in which photoinduced electron transfer from CsPbBr3nanocrystals (NCs) to dihalomethane solvent molecules produces halide anions via reductive dissociation, followed by a spontaneous anion‐exchange. Photogenerated holes in this process are less focused. Here, for CsPbBr3in dibromomethane (DBM), we discover that Br radical (Br⋅) is a key intermediate resulting from the hole oxidation. We successfully trapped Br⋅ with reported methods and found that Br⋅ is continuously generated in DBM under visible light irradiation, hence imperative for catalytic reaction design. Continuous Br⋅ formation within this halide‐exchange process is active for photocatalytic [3+2] cycloaddition for vinylcyclopentane synthesis, a privileged scaffold in medicinal chemistry, with good yield and rationalized diastereoselectivity. The NC photocatalyst is highly recyclable due to Br‐based self‐healing, leading to a particularly economic and neat heterogeneous reaction where the solvent DBM also acts as a co‐catalyst in perovskite photocatalysis. Halide perovskites, notable for efficient solar energy conversion, are demonstrated as exceptional photocatalysts for Br radical‐mediated [3+2] cycloaddition. We envisage such perovskite‐induced Br radical strategy may serve as a powerful chemical tool for developing valuable halogen radical‐involved reactions. 
    more » « less
  3. Abstract The performance of large‐area perovskite solar cells (PSCs) has been assessed for typical compositions, such as methylammonium lead iodide (MAPbI3), using a blade coater, slot‐die coater, solution shearing, ink‐jet printing, and thermal evaporation. However, the fabrication of large‐area all‐inorganic perovskite films is not well developed. This study develops, for the first time, an eco‐friendly solvent engineered all‐inorganic perovskite ink of dimethyl sulfoxide (DMSO) as a main solvent with the addition of acetonitrile (ACN), 2‐methoxyethanol (2‐ME), or a mixture of ACN and 2‐ME to fabricate large‐area CsPbI2.77Br0.23films with slot‐die coater at low temperatures (40–50 °C). The perovskite phase, morphology, defect density, and optoelectrical properties of prepared with different solvent ratios are thoroughly examined and they are correlated with their respective colloidal size distribution and solar cell performance. The optimized slot‐die‐coated CsPbI2.77Br0.23perovskite film, which is prepared from the eco‐friendly binary solvents dimethyl sulfoxide:acetonitrile (0.8:0.2 v/v), demonstrates an impressive power conversion efficiency (PCE) of 19.05%. Moreover, the device maintains ≈91% of its original PCE after 1 month at 20% relative humidity in the dark. It is believed that this study will accelerate the reliable manufacturing of perovskite devices. 
    more » « less
  4. Abstract Titanium metal–organic frameworks (Ti‐MOFs), as an appealing type of artificial photocatalyst, have shown great potential in the field of solar energy conversion due to their well‐studied photoredox activity (similar to TiO2) and good optical responsiveness of linkers, which serve as the antenna to absorb visible‐light. Although much effort has been dedicated to developing Ti‐MOFs with high photocatalytic activity, their solar energy conversion performances are still poor. Herein, we have implemented a covalent‐integration strategy to construct a series of multivariate Ti‐MOF/COF hybrid materials PdTCPP⊂PCN‐415(NH2)/TpPa (composites 1, 2, and 3), featuring excellent visible‐light utilization, a suitable band gap, and high surface area for photocatalytic H2production. Notably, the resulting composites demonstrated remarkably enhanced visible‐light‐driven photocatalytic H2evolution performance, especially for the composite 2 with a maximum H2evolution rate of 13.98 mmol g−1 h−1(turnover frequency (TOF)=227 h−1), which is much higher than that of PdTCPP⊂PCN‐415(NH2) (0.21 mmol g−1 h−1) and TpPa (6.51 mmol g−1 h−1). Our work thereby suggests a new approach to highly efficient photocatalysts for H2evolution and beyond. 
    more » « less
  5. Abstract Self‐sustaining photocatalytic NO3reduction systems could become ideal NO3removal methods. Developing an efficient, highly active photocatalyst is the key to the photocatalytic reduction of NO3. In this work, we present the synthesis of Ni2P‐modified Ta3N5(Ni2P/Ta3N5), TaON (Ni2P/TaON), and TiO2(Ni2P/TiO2). Starting with a 2 mM (28 g/mL NO3−N) aqueous solution of NO3, as made Ni2P/Ta3N5and Ni2P/TaON display as high as 79% and 61% NO3conversion under 419 nm light within 12 h, which correspond to reaction rates per gram of 196 μmol g−1 h−1and 153 μmol g−1 h−1, respectively, and apparent quantum yields of 3–4%. Compared to 24% NO3conversion in Ni2P/TiO2, Ni2P/Ta3N5and Ni2P/TaON exhibit higher activities due to the visible light active semiconductor (SC) substrates Ta3N5and TaON. We also discuss two possible electron migration pathways in Ni2P/semiconductor heterostructures. Our experimental results suggest one dominant electron migration pathway in these materials, namely: Photo‐generated electrons migrate from the semiconductor to co‐catalyst Ni2P, and upshift its Fermi level. The higher Fermi level provides greater driving force and allows NO3reduction to occur on the Ni2P surface. 
    more » « less