Abstract PurposeMost commercially available treatment planning systems (TPSs) approximate the continuous delivery of volumetric modulated arc therapy (VMAT) plans with a series of discretized static beams for treatment planning, which can make VMAT dose computation extremely inefficient. In this study, we developed a polar‐coordinate‐based pencil beam (PB) algorithm for efficient VMAT dose computation with high‐resolution gantry angle sampling that can improve the computational efficiency and reduce the dose discrepancy due to the angular under‐sampling effect. Methods and Materials6 MV pencil beams were simulated on a uniform cylindrical phantom under an EGSnrc Monte Carlo (MC) environment. The MC‐generated PB kernels were collected in the polar coordinate system for each bixel on a fluence map and subsequently fitted via a series of Gaussians. The fluence was calculated using a detectors’ eye view with off‐axis and MLC transmission factors corrected. Doses of VMAT arc on the phantom were computed by summing the convolution results between the corresponding PB kernels and fluence for each bixel in the polar coordinate system. The convolution was performed using fast Fourier transform to expedite the computing speed. The calculated doses were converted to the Cartesian coordinate system and compared with the reference dose computed by a collapsed cone convolution (CCC) algorithm of the TPS. A heterogeneous phantom was created to study the heterogeneity corrections using the proposed algorithm. Ten VMAT arcs were included to evaluate the algorithm performance. Gamma analysis and computation complexity theory were used to measure the dosimetric accuracy and computational efficiency, respectively. ResultsThe dosimetric comparisons on the homogeneous phantom between the proposed PB algorithm and the CCC algorithm for 10 VMAT arcs demonstrate that the proposed algorithm can achieve a dosimetric accuracy comparable to that of the CCC algorithm with average gamma passing rates of 96% (2%/2mm) and 98% (3%/3mm). In addition, the proposed algorithm can provide better computational efficiency for VMAT dose computation using a PC equipped with a 4‐core processor, compared to the CCC algorithm utilizing a dual 10‐core server. Moreover, the computation complexity theory reveals that the proposed algorithm has a great advantage with regard to computational efficiency for VMAT dose computation on homogeneous medium, especially when a fine angular sampling rate is applied. This can support a reduction in dose errors from the angular under‐sampling effect by using a finer angular sampling rate, while still preserving a practical computing speed. For dose calculation on the heterogeneous phantom, the proposed algorithm with heterogeneity corrections can still offer a reasonable dosimetric accuracy with comparable computational efficiency to that of the CCC algorithm. ConclusionsWe proposed a novel polar‐coordinate‐based pencil beam algorithm for VMAT dose computation that enables a better computational efficiency while maintaining clinically acceptable dosimetric accuracy and reducing dose error caused by the angular under‐sampling effect. It also provides a flexible VMAT dose computation structure that allows adjustable sampling rates and direct dose computation in regions of interest, which makes the algorithm potentially useful for clinical applications such as independent dose verification for VMAT patient‐specific QA.
more »
« less
A practical algorithm for VMAT optimization using column generation techniques
Abstract PurposeAs a challenging but important optimization problem, the inverse planning for volumetric modulated arc therapy (VMAT) has attracted much research attention. The column generation (CG) type method is so far one of the most effective solution schemes. However, it often relies on simplifications leading to significant gaps between the output and the actual feasible plan. This paper presents a novel column generation (NCG) approach to push the planning results substantially closer to practice. MethodsThe proposed NCG algorithm is equipped with multiple new quality‐enhancing and computation‐facilitating modules as below: (1) Flexible constraints are enabled on both dose rates and treatment time to adapt to machine capabilities as well as planner's preferences, respectively; (2) a cross‐control‐point intermediate aperture simulation is incorporated to better conform to the underlying physics; (3) new pricing and pruning subroutines are adopted to achieve better optimization outputs. To evaluate the effectiveness of this NCG, five VMAT plans, that is, three prostate cases and two head‐and‐neck cases, were computed using proposed NCG. The planning results were compared with those yielded by a historical benchmark planning scheme. ResultsThe NCG generated plans of significantly better quality than the benchmark planning algorithm. For prostate cases, NCG plans satisfied all planning target volume (PTV) criteria whereas CG plans failed on D10% criteria of PTVs for over 9 Gy or more on all cases. For head‐and‐neck cases, again, NCG plans satisfied all PTVs criteria while CG plans failed on D10% criteria of PTVs for over 3 Gy or more on all cases as well as the max dose criteria of both cord and brain stem for over 13 Gy on one case. Moreover, the pruning scheme was found to be effective in enhancing the optimization quality. ConclusionsThe proposed NCG inherits the computational advantages of the traditional CG, while capturing a more realistic characterization of the machine capability and underlying physics. The output solutions of the NCG are substantially closer to practical implementation.
more »
« less
- Award ID(s):
- 2016571
- PAR ID:
- 10371948
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Medical Physics
- Volume:
- 49
- Issue:
- 7
- ISSN:
- 0094-2405
- Page Range / eLocation ID:
- p. 4335-4352
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract PurposeTo study the dosimetric impact of incorporating variable relative biological effectiveness (RBE) of protons in optimizing intensity‐modulated proton therapy (IMPT) treatment plans and to compare it with conventional constant RBE optimization and linear energy transfer (LET)‐based optimization. MethodsThis study included 10 pediatric ependymoma patients with challenging anatomical features for treatment planning. Four plans were generated for each patient according to different optimization strategies: (1) constant RBE optimization (ConstRBEopt) considering standard‐of‐care dose requirements; (2) LET optimization (LETopt) using a composite cost function simultaneously optimizing dose‐averaged LET (LETd) and dose; (3) variable RBE optimization (VarRBEopt) using a recent phenomenological RBE model developed by McNamara et al.; and (4) hybrid RBE optimization (hRBEopt) assuming constant RBE for the target and variable RBE for organs at risk. By normalizing each plan to obtain the same target coverage in either constant or variable RBE, we compared dose, LETd, LET‐weighted dose, and equivalent uniform dose between the different optimization approaches. ResultsWe found that the LETopt plans consistently achieved increased LET in tumor targets and similar or decreased LET in critical organs compared to other plans. On average, the VarRBEopt plans achieved lower mean and maximum doses with both constant and variable RBE in the brainstem and spinal cord for all 10 patients. To compensate for the underdosing of targets with 1.1 RBE for the VarRBEopt plans, the hRBEopt plans achieved higher physical dose in targets and reduced mean and especially maximum variable RBE doses compared to the ConstRBEopt and LETopt plans. ConclusionWe demonstrated the feasibility of directly incorporating variable RBE models in IMPT optimization. A hybrid RBE optimization strategy showed potential for clinical implementation by maintaining all current dose limits and reducing the incidence of high RBE in critical normal tissues in ependymoma patients.more » « less
-
Abstract Objective . Deep-learning (DL)-based dose engines have been developed to alleviate the intrinsic compromise between the calculation accuracy and efficiency of the traditional dose calculation algorithms. However, current DL-based engines typically possess high computational complexity and require powerful computing devices. Therefore, to mitigate their computational burdens and broaden their applicability to a clinical setting where resource-limited devices are available, we proposed a compact dose engine via knowledge distillation (KD) framework that offers an ultra-fast calculation speed with high accuracy for prostate Volumetric Modulated Arc Therapy (VMAT). Approach . The KD framework contains two sub-models: a large pre-trained teacher and a small to-be-trained student. The student receives knowledge transferred from the teacher for better generalization. The trained student serves as the final engine for dose calculation. The model input is patient computed tomography and VMAT dose in water, and the output is DL-calculated patient dose. The ground-truth \dose was computed by the Monte Carlo module of the Monaco treatment planning system. Twenty and ten prostate cases were included for model training and assessment, respectively. The model’s performance (teacher/student/student-only) was evaluated by Gamma analysis and inference efficiency. Main results . The dosimetric comparisons (input/DL-calculated/ground-truth doses) suggest that the proposed engine can effectively convert low-accuracy doses in water to high-accuracy patient doses. The Gamma passing rate (2%/2 mm, 10% threshold) between the DL-calculated and ground-truth doses was 98.64 ± 0.62% (teacher), 98.13 ± 0.76% (student), and 96.95 ± 1.02% (student-only). The inference time was 16 milliseconds (teacher) and 11 milliseconds (student/student-only) using a graphics processing unit device, while it was 936 milliseconds (teacher) and 374 milliseconds (student/student-only) using a central processing unit device. Significance . With the KD framework, a compact dose engine can achieve comparable accuracy to that of a larger one. Its compact size reduces the computational burdens and computing device requirements, and thus such an engine can be more clinically applicable.more » « less
-
Abstract BackgroundStereotactic radiosurgery (SRS) is an established treatment for patients with brain metastases (BMs). However, damage to the healthy brain may limit the tumor dose for patients with multiple lesions. PurposeIn this study, we investigate the potential of spatiotemporal fractionation schemes to reduce the biological dose received by the healthy brain in SRS of multiple BMs, and also demonstrate a novel concept of spatiotemporal fractionation for polymetastatic cancer patients that faces less hurdles for clinical implementation. MethodsSpatiotemporal fractionation (STF) schemes aim at partial hypofractionation in the metastases along with more uniform fractionation in the healthy brain. This is achieved by delivering distinct dose distributions in different fractions, which are designed based on their cumulative biologically effective dose () such that each fraction contributes with high doses to complementary parts of the target volume, while similar dose baths are delivered to the normal tissue. For patients with multiple brain metastases, a novel constrained approach to spatiotemporal fractionation (cSTF) is proposed, which is more robust against setup and biological uncertainties. The approach aims at irradiating entire metastases with possibly different doses, but spatially similar dose distributions in every fraction, where the optimal dose contribution of every fraction to each metastasis is determined using a new planning objective to be added to the BED‐based treatment plan optimization problem. The benefits of spatiotemporal fractionation schemes are evaluated for three patients, each with >25 BMs. ResultsFor the same tumor BED10and the same brain volume exposed to high doses in all plans, the mean brain BED2can be reduced compared to uniformly fractionated plans by 9%–12% with the cSTF plans and by 13%–19% with the STF plans. In contrast to the STF plans, the cSTF plans avoid partial irradiation of the individual metastases and are less sensitive to misalignments of the fractional dose distributions when setup errors occur. ConclusionSpatiotemporal fractionation schemes represent an approach to lower the biological dose to the healthy brain in SRS‐based treatments of multiple BMs. Although cSTF cannot achieve the full BED reduction of STF, it improves on uniform fractionation and is more robust against both setup errors and biological uncertainties related to partial tumor irradiation.more » « less
-
Computational advances along with the profound impact of uncertainty on power system investments have motivated the creation of power system planning frameworks that handle long-run uncertainty, large number of alternative plans, and multiple objectives. Planning agencies seek guidance to assess such frameworks. This article addresses this need in two ways. First, we augment previously proposed criteria for assessing planning frameworks by including new criteria such as stakeholder acceptance to make the assessments more comprehensive, while enhancing the practical applicability of assessment criteria by offering criterion-specific themes and questions. Second, using the proposed criteria, we compare two widely used but fundamentally distinct frameworks: an ‘agree-on-plans’ framework, Robust Decision Making (RDM), and an ‘agree-on-assumptions’ framework, centered around Stochastic Programming (SP). By comparing for the first time head-to-head the two distinct frameworks for an electricity supply planning problem under uncertainties in Bangladesh, we conclude that RDM relies on a large number of simulations to provide ample information to decision makers and stakeholders, and to facilitate updating of subjective inputs. In contrast, SP is a highly dimensional optimization problem that identifies plans with relatively good probability-weighted performance in a single step, but even with computational advances remains subject to the curse of dimensionality.more » « less
An official website of the United States government
