skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Incorporating variable RBE in IMPT optimization for ependymoma
Abstract PurposeTo study the dosimetric impact of incorporating variable relative biological effectiveness (RBE) of protons in optimizing intensity‐modulated proton therapy (IMPT) treatment plans and to compare it with conventional constant RBE optimization and linear energy transfer (LET)‐based optimization. MethodsThis study included 10 pediatric ependymoma patients with challenging anatomical features for treatment planning. Four plans were generated for each patient according to different optimization strategies: (1) constant RBE optimization (ConstRBEopt) considering standard‐of‐care dose requirements; (2) LET optimization (LETopt) using a composite cost function simultaneously optimizing dose‐averaged LET (LETd) and dose; (3) variable RBE optimization (VarRBEopt) using a recent phenomenological RBE model developed by McNamara et al.; and (4) hybrid RBE optimization (hRBEopt) assuming constant RBE for the target and variable RBE for organs at risk. By normalizing each plan to obtain the same target coverage in either constant or variable RBE, we compared dose, LETd, LET‐weighted dose, and equivalent uniform dose between the different optimization approaches. ResultsWe found that the LETopt plans consistently achieved increased LET in tumor targets and similar or decreased LET in critical organs compared to other plans. On average, the VarRBEopt plans achieved lower mean and maximum doses with both constant and variable RBE in the brainstem and spinal cord for all 10 patients. To compensate for the underdosing of targets with 1.1 RBE for the VarRBEopt plans, the hRBEopt plans achieved higher physical dose in targets and reduced mean and especially maximum variable RBE doses compared to the ConstRBEopt and LETopt plans. ConclusionWe demonstrated the feasibility of directly incorporating variable RBE models in IMPT optimization. A hybrid RBE optimization strategy showed potential for clinical implementation by maintaining all current dose limits and reducing the incidence of high RBE in critical normal tissues in ependymoma patients.  more » « less
Award ID(s):
2244340
PAR ID:
10598816
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
National Institute of Health
Date Published:
Journal Name:
Journal of Applied Clinical Medical Physics
Volume:
25
Issue:
1
ISSN:
1526-9914
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundStereotactic radiosurgery (SRS) is an established treatment for patients with brain metastases (BMs). However, damage to the healthy brain may limit the tumor dose for patients with multiple lesions. PurposeIn this study, we investigate the potential of spatiotemporal fractionation schemes to reduce the biological dose received by the healthy brain in SRS of multiple BMs, and also demonstrate a novel concept of spatiotemporal fractionation for polymetastatic cancer patients that faces less hurdles for clinical implementation. MethodsSpatiotemporal fractionation (STF) schemes aim at partial hypofractionation in the metastases along with more uniform fractionation in the healthy brain. This is achieved by delivering distinct dose distributions in different fractions, which are designed based on their cumulative biologically effective dose () such that each fraction contributes with high doses to complementary parts of the target volume, while similar dose baths are delivered to the normal tissue. For patients with multiple brain metastases, a novel constrained approach to spatiotemporal fractionation (cSTF) is proposed, which is more robust against setup and biological uncertainties. The approach aims at irradiating entire metastases with possibly different doses, but spatially similar dose distributions in every fraction, where the optimal dose contribution of every fraction to each metastasis is determined using a new planning objective to be added to the BED‐based treatment plan optimization problem. The benefits of spatiotemporal fractionation schemes are evaluated for three patients, each with >25 BMs. ResultsFor the same tumor BED10and the same brain volume exposed to high doses in all plans, the mean brain BED2can be reduced compared to uniformly fractionated plans by 9%–12% with the cSTF plans and by 13%–19% with the STF plans. In contrast to the STF plans, the cSTF plans avoid partial irradiation of the individual metastases and are less sensitive to misalignments of the fractional dose distributions when setup errors occur. ConclusionSpatiotemporal fractionation schemes represent an approach to lower the biological dose to the healthy brain in SRS‐based treatments of multiple BMs. Although cSTF cannot achieve the full BED reduction of STF, it improves on uniform fractionation and is more robust against both setup errors and biological uncertainties related to partial tumor irradiation. 
    more » « less
  2. PURPOSE: Identify Oropharyngeal cancer (OPC) patients at high-risk of developing long-term severe radiation-associated symptoms using dose volume histograms for organs-at-risk, via unsupervised clustering. MATERIAL AND METHODS: All patients were treated using radiation therapy for OPC. Dose-volume histograms of organs-at-risk were extracted from patients’ treatment plans. Symptom ratings were collected via the MD Anderson Symptom Inventory (MDASI) given weekly during, and 6 months post-treatment. Drymouth, trouble swallowing, mucus, and vocal dysfunction were selected for analysis in this study. Patient stratifications were obtained by applying Bayesian Mixture Models with three components to patient’s dose histograms for relevant organs. The clusters with the highest total mean doses were translated into dose thresholds using rule mining. Patient stratifications were compared against Tumor staging information using multivariate likelihood ratio tests. Model performance for prediction of moderate/severe symptoms at 6 months was compared against normal tissue complication probability (NTCP) models using cross-validation. RESULTS: A total of 349 patients were included for long-term symptom prediction. High-risk clusters were significantly correlated with outcomes for severe late drymouth (p <.0001, OR = 2.94), swallow (p = .002, OR = 5.13), mucus (p = .001, OR = 3.18), and voice (p = .009, OR = 8.99). Simplified clusters were also correlated with late severe symptoms for drymouth (p <.001, OR = 2.77), swallow (p = .01, OR = 3.63), mucus (p = .01, OR = 2.37), and voice (p <.001, OR = 19.75). Proposed cluster stratifications show better performance than NTCP models for severe drymouth (AUC.598 vs.559, MCC.143 vs.062), swallow (AUC.631 vs.561, MCC.20 vs -.030), mucus (AUC.596 vs.492, MCC.164 vs -.041), and voice (AUC.681 vs.555, MCC.181 vs -.019). Simplified dose thresholds also show better performance than baseline models for predicting late severe ratings for all symptoms. CONCLUSION: Our results show that leveraging the 3-D dose histograms from radiation therapy plan improves stratification of patients according to their risk of experiencing long-term severe radiation associated symptoms, beyond existing NTPC models. Our rule-based method can approximate our stratifications with minimal loss of accuracy and can proactively identify risk factors for radiation-associated toxicity. 
    more » « less
  3. Abstract PurposeAs a challenging but important optimization problem, the inverse planning for volumetric modulated arc therapy (VMAT) has attracted much research attention. The column generation (CG) type method is so far one of the most effective solution schemes. However, it often relies on simplifications leading to significant gaps between the output and the actual feasible plan. This paper presents a novel column generation (NCG) approach to push the planning results substantially closer to practice. MethodsThe proposed NCG algorithm is equipped with multiple new quality‐enhancing and computation‐facilitating modules as below: (1) Flexible constraints are enabled on both dose rates and treatment time to adapt to machine capabilities as well as planner's preferences, respectively; (2) a cross‐control‐point intermediate aperture simulation is incorporated to better conform to the underlying physics; (3) new pricing and pruning subroutines are adopted to achieve better optimization outputs. To evaluate the effectiveness of this NCG, five VMAT plans, that is, three prostate cases and two head‐and‐neck cases, were computed using proposed NCG. The planning results were compared with those yielded by a historical benchmark planning scheme. ResultsThe NCG generated plans of significantly better quality than the benchmark planning algorithm. For prostate cases, NCG plans satisfied all planning target volume (PTV) criteria whereas CG plans failed on D10% criteria of PTVs for over 9 Gy or more on all cases. For head‐and‐neck cases, again, NCG plans satisfied all PTVs criteria while CG plans failed on D10% criteria of PTVs for over 3 Gy or more on all cases as well as the max dose criteria of both cord and brain stem for over 13 Gy on one case. Moreover, the pruning scheme was found to be effective in enhancing the optimization quality. ConclusionsThe proposed NCG inherits the computational advantages of the traditional CG, while capturing a more realistic characterization of the machine capability and underlying physics. The output solutions of the NCG are substantially closer to practical implementation. 
    more » « less
  4. Abstract PurposeMost commercially available treatment planning systems (TPSs) approximate the continuous delivery of volumetric modulated arc therapy (VMAT) plans with a series of discretized static beams for treatment planning, which can make VMAT dose computation extremely inefficient. In this study, we developed a polar‐coordinate‐based pencil beam (PB) algorithm for efficient VMAT dose computation with high‐resolution gantry angle sampling that can improve the computational efficiency and reduce the dose discrepancy due to the angular under‐sampling effect. Methods and Materials6 MV pencil beams were simulated on a uniform cylindrical phantom under an EGSnrc Monte Carlo (MC) environment. The MC‐generated PB kernels were collected in the polar coordinate system for each bixel on a fluence map and subsequently fitted via a series of Gaussians. The fluence was calculated using a detectors’ eye view with off‐axis and MLC transmission factors corrected. Doses of VMAT arc on the phantom were computed by summing the convolution results between the corresponding PB kernels and fluence for each bixel in the polar coordinate system. The convolution was performed using fast Fourier transform to expedite the computing speed. The calculated doses were converted to the Cartesian coordinate system and compared with the reference dose computed by a collapsed cone convolution (CCC) algorithm of the TPS. A heterogeneous phantom was created to study the heterogeneity corrections using the proposed algorithm. Ten VMAT arcs were included to evaluate the algorithm performance. Gamma analysis and computation complexity theory were used to measure the dosimetric accuracy and computational efficiency, respectively. ResultsThe dosimetric comparisons on the homogeneous phantom between the proposed PB algorithm and the CCC algorithm for 10 VMAT arcs demonstrate that the proposed algorithm can achieve a dosimetric accuracy comparable to that of the CCC algorithm with average gamma passing rates of 96% (2%/2mm) and 98% (3%/3mm). In addition, the proposed algorithm can provide better computational efficiency for VMAT dose computation using a PC equipped with a 4‐core processor, compared to the CCC algorithm utilizing a dual 10‐core server. Moreover, the computation complexity theory reveals that the proposed algorithm has a great advantage with regard to computational efficiency for VMAT dose computation on homogeneous medium, especially when a fine angular sampling rate is applied. This can support a reduction in dose errors from the angular under‐sampling effect by using a finer angular sampling rate, while still preserving a practical computing speed. For dose calculation on the heterogeneous phantom, the proposed algorithm with heterogeneity corrections can still offer a reasonable dosimetric accuracy with comparable computational efficiency to that of the CCC algorithm. ConclusionsWe proposed a novel polar‐coordinate‐based pencil beam algorithm for VMAT dose computation that enables a better computational efficiency while maintaining clinically acceptable dosimetric accuracy and reducing dose error caused by the angular under‐sampling effect. It also provides a flexible VMAT dose computation structure that allows adjustable sampling rates and direct dose computation in regions of interest, which makes the algorithm potentially useful for clinical applications such as independent dose verification for VMAT patient‐specific QA. 
    more » « less
  5. Abstract Developing applicable clinical machine learning models is a difficult task when the data includes spatial information, for example, radiation dose distributions across adjacent organs at risk. We describe the co‐design of a modeling system, DASS, to support the hybrid human‐machine development and validation of predictive models for estimating long‐term toxicities related to radiotherapy doses in head and neck cancer patients. Developed in collaboration with domain experts in oncology and data mining, DASS incorporates human‐in‐the‐loop visual steering, spatial data, and explainable AI to augment domain knowledge with automatic data mining. We demonstrate DASS with the development of two practical clinical stratification models and report feedback from domain experts. Finally, we describe the design lessons learned from this collaborative experience. 
    more » « less