In an ultrafast nonlinear optical interaction, the electric field of the emitted nonlinear signal provides direct access to the induced nonlinear transient polarization or transient currents and thus carries signatures of ultrafast dynamics in a medium. Measurement of the electric field of such signals offers sensitive observables to track ultrafast electron dynamics in various systems. In this work, we resolve the real-time phase of the electric field of a femtosecond third-order nonlinear optical signal in the molecular frame. The electric field emitted from impulsively pre-aligned gas-phase molecules at room temperature, in a degenerate four-wave mixing scheme, is measured using a spectral interferometry technique. The nonlinear signal is measured around a rotational revival to extract its molecular-frame angle dependence from pump-probe time-delay scans. By comparing these measurements for two linear molecules, carbon dioxide and nitrogen, we show that the measured second-order phase parameter (temporal chirp) of the signal is sensitive to the valence electronic symmetry of the molecules, whereas the amplitude of the signal does not show such sensitivity. We compare measurements to theoretical calculations of the chirp observable in the molecular frame. This work is an important step towards using electric field measurements in nonlinear optical spectroscopy to study ultrafast dynamics of electronically excited molecules in the molecular frame. 
                        more » 
                        « less   
                    
                            
                            Electric field measurement of femtosecond time-resolved four-wave mixing signals in molecules
                        
                    
    
            We report an experiment to measure the femtosecond electric field of the signal emitted from an optical third-order nonlinear interaction in carbon dioxide molecules. Using degenerate four-wave mixing with femtosecond near infrared laser pulses in combination with the ultra-weak femtosecond pulse measurement technique of TADPOLE, we measure the nonlinear signal electric field in the time domain at different time delays between the interacting pulses. The chirp extracted from the temporal phase of the emitted nonlinear signal is found to sensitively depend on the electronic and rotational contributions to the nonlinear response. While the rotational contribution results in a nonlinear signal chirp close to the chirp of the input pulses, the electronic contribution results in a significantly higher chirp which changes with time delay. Our work demonstrates that electric field-resolved nonlinear spectroscopy offers detailed information on nonlinear interactions at ultrafast time scales. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2208061
- PAR ID:
- 10371990
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 30
- Issue:
- 20
- ISSN:
- 1094-4087; OPEXFF
- Format(s):
- Medium: X Size: Article No. 36065
- Size(s):
- Article No. 36065
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We present a phase-modulated approach for ultrabroadband Fourier transform electronic spectroscopy. To overcome the bandwidth limitations and spatial chirp introduced by acousto-optic modulators (AOMs), pulses from a 1 µm laser are modulated using AOMs prior to continuum generation. This phase modulation is transferred to the continuum generated in a yttrium aluminum garnet crystal. Separately generated phase-modulated continua in two arms of a Mach-Zehnder interferometer interfere with the difference of their modulation frequencies, enabling physical under-sampling of the signal and the suppression of low-frequency noise. By interferometrically tracking the relative time delay of the continua, we perform continuous, rapid-scanning Fourier transform electronic spectroscopy with a high signal-to-noise ratio and spectral resolution. As proof of principle, we measure the linear absorption and fluorescence excitation spectra of a laser dye and various biological samples.more » « less
- 
            Abstract The efficient generation, accurate detection, and detailed physical tracking of energetic electrons are of applied interest for high harmonics generation, electron-impact spectroscopy, and femtosecond time-resolved scanning tunneling microscopy. We here investigate the generation of photoelectrons (PEs) by exposing plasmonic nanostructures to intense laser pulses in the infrared (IR) spectral regime and analyze the sensitivity of PE spectra to competing elementary interactions for direct and rescattered photoemission pathways. Specifically, we measured and numerically simulated emitted PE momentum distributions from prototypical spherical gold nanoparticles (NPs) with diameters between 5 and 70 nm generated by short laser pulses with peak intensities of 8.0 × 10 12 and 1.2 × 10 13 W/cm 2 , demonstrating the shaping of PE spectra by the Coulomb repulsion between PEs, accumulating residual charges on the NP, and induced plasmonic electric fields. Compared to well-understood rescattering PE cutoff energies for strong-field photoemission from gaseous atomic targets (10× the ponderomotive energy), our measured and simulated PE spectra reveal a dramatic cutoff-energy increase of two orders of magnitude with a significantly higher contribution from direct photoemission. Our findings indicate that direct PEs reach up to 93 % of the rescattered electron cutoff energy, in contrast to 20 % for gaseous atoms, suggesting a novel scheme for the development of compact tunable tabletop electron sources.more » « less
- 
            Abstract The field of Mie‐resonant nanophotonics has attracted a lot of attention recently due to many promising applications in linear and nonlinear metaoptics. Optically induced magnetic resonances define novel characteristics of isolated high‐index dielectric nanoparticles and their oligomers. Here, the orientation‐dependent nonlinear frequency generation from dielectric oligomers with different symmetries, being all characterized by isotropic linear response, is demonstrated. The rotational dependence of the third‐harmonic signal emitted by the nanoparticle oligomers in accord with their point‐group symmetry (e.g., C3 or C4) is observed experimentally, while their linear scattering remains isotropic. The experimental data are in a good agreement with numerical simulations and the symmetry analysis of the nonlinear susceptibility tensor. The results open a new avenue for tailoring nonlinear properties of nanoscale structures.more » « less
- 
            We propose a new approach to supercontinuum generation and carrier-envelope-offset detection based on saturated second-order nonlinear interactions in dispersion-engineered nanowaveguides. The technique developed here broadens the interacting harmonics by forming stable bifurcations of the pulse envelopes due to an interplay between phase-mismatch and pump depletion. We first present an intuitive heuristic model for spectral broadening by second-harmonic generation of femtosecond pulses and show that this model agrees well with experiments. Then, having established strong agreement between theory and experiment, we develop scaling laws that determine the energy required to generate an octave of bandwidth as a function of input pulse duration, device length, and input pulse chirp. These scaling laws suggest that future realization based on this approach could enable supercontinuum generation with orders of magnitude less energy than current state-of-the-art devices.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
