We investigated the generation and control of fast photoelectrons (PEs) by exposing plasmonic nanoparticles (NPs) to short infrared (IR) laser pulses with peak intensities between 1012and 3 × 1013 W/cm2. Our measured and numerically simulated PE momentum distributions demonstrate the extent to which PE yields and cutoff energies are controlled by the NP size, material, and laser peak intensity. For strong-field photoemission from spherical silver, gold, and platinum NPs with diameters between 10 and 100 nm our results confirm and surpass extremely high PEs cutoff energies, up to several hundred times the incident laser-pulse ponderomotive energy, found recently for gold nanospheres [Saydanzad et al., Nanophotonics12, 1931 (2023)]. As reported previously for dielectric NPs [Rupp et al., J. Mod. Opt.64, 995 (2017)], at higher intensities the cutoff energies we deduce from measured and simulated PE spectra tend to converge to a metal-independent limit. We expect these characteristics of light-induced electron emission from prototypical plasmonic metallic nanospheres to promote the understanding of the electronic dynamics in more complex plasmonic nanostructures and the design of nanoscale light-controlled plasmonic electron sources for photoelectronic devices of applied interest.
more »
« less
Enhanced cutoff energies for direct and rescattered strong-field photoelectron emission of plasmonic nanoparticles
Abstract The efficient generation, accurate detection, and detailed physical tracking of energetic electrons are of applied interest for high harmonics generation, electron-impact spectroscopy, and femtosecond time-resolved scanning tunneling microscopy. We here investigate the generation of photoelectrons (PEs) by exposing plasmonic nanostructures to intense laser pulses in the infrared (IR) spectral regime and analyze the sensitivity of PE spectra to competing elementary interactions for direct and rescattered photoemission pathways. Specifically, we measured and numerically simulated emitted PE momentum distributions from prototypical spherical gold nanoparticles (NPs) with diameters between 5 and 70 nm generated by short laser pulses with peak intensities of 8.0 × 10 12 and 1.2 × 10 13 W/cm 2 , demonstrating the shaping of PE spectra by the Coulomb repulsion between PEs, accumulating residual charges on the NP, and induced plasmonic electric fields. Compared to well-understood rescattering PE cutoff energies for strong-field photoemission from gaseous atomic targets (10× the ponderomotive energy), our measured and simulated PE spectra reveal a dramatic cutoff-energy increase of two orders of magnitude with a significantly higher contribution from direct photoemission. Our findings indicate that direct PEs reach up to 93 % of the rescattered electron cutoff energy, in contrast to 20 % for gaseous atoms, suggesting a novel scheme for the development of compact tunable tabletop electron sources.
more »
« less
- Award ID(s):
- 2110633
- PAR ID:
- 10418346
- Date Published:
- Journal Name:
- Nanophotonics
- Volume:
- 12
- Issue:
- 10
- ISSN:
- 2192-8614
- Page Range / eLocation ID:
- 1931 to 1942
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present theoretical studies of above threshold ionization (ATI) using sculpted laser pulses. The time-dependent Schrödinger equation is solved to calculate the ATI energy and momentum spectra, and a qualitative understanding of the electron motion after ionization is explored using the simple man’s model and a classical model that solves Newton’s equation of motion. Results are presented for Gaussian and Airy laser pulses with identical power spectra, but differing spectral phases. The simulations show that the third order spectral phase of the Airy pulse, which can alter the temporal envelope of the electric field, causes changes to the timing of ionization and the dynamics of the rescattering process. Specifically, the use of Airy pulses in the ATI process results in a shift of the Keldysh plateau cutoff to lower energy due to a decreased pondermotive energy of the electron in the laser field, and the side lobes of the Airy laser pulse change the number and timing of rescattering events. This translates into changes to the high-order ATI plateau and intra- and intercycle interference features. Our results also show that laser pulses with identical carrier envelope phases and nearly identical envelopes yield different photoelectron momentum distributions, which are a direct result of the pulse’s spectral phase.more » « less
-
To solve the time-dependent Schrödinger equation in spatially inhomogeneous pulses of electromagnetic radiation, we propose an iterative semiclassical complex trajectory approach. In numerical applications, we validate this method agains ab initio numerical solutions by scrutinizing (a) electronic sates in combined Coulomb and spatially homogeneous laser felds and (b) sreaked photoemission from hydrogen atoms and plasmonic gold nanospheres. In comparison with sreaked photoemission calculations performed in srong-feld approximation, we demonsrate the improved reconsruction of the spatially inhomogeneous induced plasmonic infrared feld near a nanoparticle surface from sreaked photoemission spectra.more » « less
-
null (Ed.)While recent experiments provided compelling evidence for an intricate dependence of attosecond photoemission-time delays on the solid’s electronic band structure, the extent to which electronic transport and dispersion in solids can be imaged in time-resolved photoelectron (PE) spectra remains poorly understood. Emphasizing the distinction between photoemission time delays measured with two-photon, two-color interferometric spectroscopy, and transport times, we demonstrate how the effect of energy dispersion in the solid on photoemission delays can, in principle, be observed in interferometric photoemission. We reveal analytically a scaling relation between the PE transport time in the solid and the observable photoemission delay and confirm this relation in numerical simulations for a model system. We trace photoemission delays to the phase difference the PE accumulates inside the solid and, in particular, predict negative photoemission delays. Based on these findings, we suggest a novel time-domain interferometric solid-state energy-momentum-dispersion imaging method.more » « less
-
We analytically and numerically investigate the emission of high-order harmonic radiation from model solids by intense few-cycle midinfrared laser pulses. In single-active-electron approximation, we expand the active electron’s wave function in a basis of adiabatic Houston states and describe the solid’s electronic band structure in terms of an adjustable Kronig-Penney model potential. For high-order harmonic generation (HHG) from MgO crystals, we examine spectra from two-band and converged multiband numerical calculations. We discuss the characteristics of intra- and interband contributions to the HHG spectrum for computations including initial crystal momenta either from the point at the center of the first Brillouin zone (BZ) only or from the entire first BZ. For sufficiently high intensities of the driving laser field, we find relevant contributions to HHG from the entire first BZ. Based on numerically calculated spectra, we scrutinize the cutoff harmonic orders as a function of the laser peak intensity and find good qualitative agreement with our analytical saddle-point-approximation predictions and published theoretical data.more » « less
An official website of the United States government

