skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High mass flow rate in a BAL outflow of quasar SDSS J1130 + 0411
ABSTRACT We present the analysis of the absorption troughs of six outflows observed in quasar SDSS J1130 + 0411 ($$z$$ ≈ 3.98) with radial velocities ranging from −2400 to $$-15\, 400$$ km s−1. These spectra were taken with the Very Large Telescope/Ultraviolet and Visual Echelle Spectrograph over the rest-frame wavelength range of 1135–1890 Å. In the main outflow system ($$v$$ ≈ −3200 km s−1), we identify Fe ii and several Fe ii* absorption troughs, as well as Si ii and Si ii* troughs, which we use to determine the electron number density $$\log n_e = 2.6_{-0.7}^{+0.8}$$ cm−3. Using the column densities of these and other ions, we determine a photoionization solution with hydrogen column density $$\log N_H = 21.44_{-0.33}^{+0.24}$$ cm−2 and ionization parameter $$\log U_H = -1.75_{-0.45}^{+0.28}$$. From these values, we derive the distance $$R = 16_{-11}^{+23}$$ kpc, the average mass flow rate $$\dot{M} = 4100_{-2400}^{+6600}$$ M⊙ yr−1, and the kinetic luminosity $$\log \dot{E}_k = 46.13_{-0.37}^{+0.41}$$ erg s−1. This $$\dot{E}_k$$ is $$1.4_{-0.8}^{+2.2}$$ per cent of the quasar’s Eddington luminosity, and therefore contributes significantly to AGN feedback.  more » « less
Award ID(s):
2106249
PAR ID:
10372027
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
516
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
p. 3778-3785
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT In the Hubble Space Telescope/Cosmic Origins Spectrograph spectrum of the Seyfert 1 galaxy 2MASX J14292507+4518318, we have identified a narrow absorption line outflow system with a velocity of −151 km s−1. This outflow exhibits absorption troughs from the resonance states of ions like C iv, N v, S iv, and Si ii, as well as excited states from C ii* and Si ii*. Our investigation of the outflow involved measuring ionic column densities and conducting photoionization analysis. These allow the total column density of the outflow to be estimated as log NH = 19.84 cm−2, its ionization parameter to be log UH = −2.0, and its electron number density to be log ne = 2.75 cm−3. These measurements enabled us to determine the mass-loss rate and the kinetic luminosity of the outflow system to be $$\dot{M}$$ = 0.22 $$\mathrm{ M}_{\odot } \, \mathrm{ yr}^{-1}$$ and $$\log \dot{E_{\mathrm{ K}}}$$ = 39.3 erg s−1, respectively. We have also measured the location of the outflow system to be at ∼275 pc from the central source. This outflow does not contribute to the active galactic nucleus (AGN) feedback processes due to the low ratio of the outflow’s kinetic luminosity to the AGN’s Eddington luminosity ($$\dot{E_{\mathrm{ K}}}/{L_{\mathrm{ Edd}}}\approx 0.00025 {{\, \rm per\, cent}}$$). This outflow is remarkably similar to the two bipolar lobe outflows observed in the Milky Way by XMM–Newton and Chandra. 
    more » « less
  2. ABSTRACT We analyse the VLT/UVES spectrum of the quasar SDSS J143907.5-010616.7, retrieved from the UVES Spectral Quasar Absorption Database. We identify two outflow systems in the spectrum: a mini broad absorption line (mini-BAL) system and a narrow absorption line (NAL) system. We measure the ionic column densities of the mini-BAL ($$v$$ = −1550 km s−1) outflow, which has excited state absorption troughs of $${\rm Fe\, \rm {\small {ii}}}$$. We determine that the electron number density $$\log {n_e}=3.4^{+0.1}_{-0.1}$$, based on the ratios between the excited and ground state abundances of $${\rm Fe\, \rm {\small {ii}}}$$, and find the kinetic luminosity of the outflow to be $${\lesssim}0.1\,\hbox{per cent}$$ of the quasar’s Eddington luminosity, making it insufficient to contribute to AGN feedback. 
    more » « less
  3. Context.Quasar outflows are often analyzed to determine their ability to contribute to active galactic nucleus (AGN) feedback. We identified a broad absorption line (BAL) outflow in the VLT/UVES spectrum of the quasar SDSS J1321−0041. The outflow shows troughs from Fe II, and is thus categorized as an FeLoBAL. This outfow is unusual among the population of FeLoBAL outflows, as it displays C IIand Si IIBALs. Aims.Outflow systems require a kinetic luminosity above ∼0.5% of the quasar’s luminosity to contribute to AGN feedback. For this reason, we analyzed the spectrum of J1321−0041 to determine the outflow’s kinetic luminosity, as well as the quasar’s bolometric luminosity. Methods.We measured the ionic column densities from the absorption troughs in the spectrum and determined the hydrogen column density and ionization parameter using those column densities as our constraints. We also determined the electron number density,ne, based on the ratios between the excited-state and resonance-state column densities of Fe IIand Si II. This allowed us to find the distance of the outflow from its central source, as well as its kinetic luminosity. Results.We determined the kinetic luminosity of the outflow to be 8.4−5.4+13.7 × 1045 erg s−1and the quasar’s bolometric luminosity to be 1.72 ± 0.13 × 1047 erg s−1, resulting in a ratio ofĖk/LBol = 4.8−3.1+8.0%. We conclude that this outflow has a sufficiently high kinetic luminosity to contribute to AGN feedback. 
    more » « less
  4. Context.The study of quasar outflows is essential for understanding the connection between active galactic nuclei (AGN) and their host galaxies. We analyzed the VLT/UVES spectrum of quasar SDSS J0932+0840 and identified several narrow and broad outflow components in absorption, with multiple ionization species including Fe II. This places it among the rare class of outflows known as iron low-ionization broad absorption line outflows (FeLoBALs). Aims.We studied one of the outflow components to determine its physical characteristics by determining the total hydrogen column density, the ionization parameter, and the hydrogen number density. Through these parameters, we obtained the distance of the outflow from the central source, its mass outflow rate, and its kinetic luminosity, and we constrained the contribution of the outflow to the AGN feedback. Methods.We obtained the ionic column densities from the absorption troughs in the spectrum and used photoionization modeling to extract the physical parameters of the outflow, including the total hydrogen column density and ionization parameter. The relative population of the observed excited states of Fe IIwas used to model the hydrogen number density of the outflow. Results.We used the Fe IIexcited states to model the electron number density (ne) and hydrogen number density (nH) independently and obtainedne≃ 103.4cm−3andnH≃ 104.8cm−3. Our analysis of the physical structure of the cloud shows that these two results are consistent with each other. This places the outflow system at a distance of 0.7−0.4+0.9kpc from the central source, with a mass flow rate (Ṁ) of 43−26+65 Myr−1and a kinetic luminosity (Ėk) of 0.7−0.4+1.1× 1043erg s−1. This is 0.5−0.3+0.7× 10−4of the Eddington luminosity (LEdd) of the quasar, and we thus conclude that this outflow is not powerful enough to contribute significantly toward AGN feedback. 
    more » « less
  5. null (Ed.)
    ABSTRACT We present a systematic investigation of physical conditions and elemental abundances in four optically thick Lyman-limit systems (LLSs) at z = 0.36–0.6 discovered within the cosmic ultraviolet baryon survey (CUBS). Because intervening LLSs at z < 1 suppress far-UV (ultraviolet) light from background QSOs, an unbiased search of these absorbers requires a near-UV-selected QSO sample, as achieved by CUBS. CUBS LLSs exhibit multicomponent kinematic structure and a complex mix of multiphase gas, with associated metal transitions from multiple ionization states such as C ii, C iii, N iii, Mg ii, Si ii, Si iii, O ii, O iii, O vi, and Fe ii absorption that span several hundred km s−1 in line-of-sight velocity. Specifically, higher column density components (log N(H i)/cm−2≳ 16) in all four absorbers comprise dynamically cool gas with $$\langle T \rangle =(2\pm 1) \times 10^4\,$$K and modest non-thermal broadening of $$\langle b_\mathrm{nt} \rangle =5\pm 3\,$$km s−1. The high quality of the QSO absorption spectra allows us to infer the physical conditions of the gas, using a detailed ionization modelling that takes into account the resolved component structures of H i and metal transitions. The range of inferred gas densities indicates that these absorbers consist of spatially compact clouds with a median line-of-sight thickness of $$160^{+140}_{-50}$$ pc. While obtaining robust metallicity constraints for the low density, highly ionized phase remains challenging due to the uncertain $$N\mathrm{(H\, {\small I})}$$, we demonstrate that the cool-phase gas in LLSs has a median metallicity of $$\mathrm{[\alpha /H]_{1/2}}=-0.7^{+0.1}_{-0.2}$$, with a 16–84 percentile range of [α/H] = (−1.3, −0.1). Furthermore, the wide range of inferred elemental abundance ratios ([C/α], [N/α], and [Fe/α]) indicate a diversity of chemical enrichment histories. Combining the absorption data with deep galaxy survey data characterizing the galaxy environment of these absorbers, we discuss the physical connection between star-forming regions in galaxies and diffuse gas associated with optically thick absorption systems in the z < 1 circumgalactic medium. 
    more » « less