skip to main content


Title: Grayscale Digital Light Processing and Post‐Treatment for the Fabrication of 3D‐Printed Polymer Blends
  more » « less
Award ID(s):
1826454
NSF-PAR ID:
10372032
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Engineering Materials
Volume:
24
Issue:
8
ISSN:
1438-1656
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents the prospect of 3D printing technology to generate artificial soil analogs with the goal of modeling the mechanical behavior of coarse-grained soils. 3D X-ray CT scans of natural angular and rounded sand particles have been used to generate angular and rounded particle analogs using the polyjet 3D printing technology. A comparison of the scanned natural sand particles and the 3D printed particles demonstrates the ability of 3D printing technology to reproduce the shape and size of the sand particles. The results of oedometer compression tests on the angular and rounded natural and 3D printed particles are used to demonstrate the effect of constituent material (i.e. quartz versus polymer) stiffness on the measured soil compressibility and investigate the normalization of the response using the Hertz contact theory. The results provided in this paper also include comparison of the small-strain moduli–mean effective stress relationship obtained for the natural and 3D printed soils. This paper illustrates the potential use of 3D printed analogs to model the mechanical behavior of coarse-grained soils and identifies future research needs for implementation of the proposed normalization scheme within the critical state soil mechanics framework. 
    more » « less
  2. Abstract

    Polymer foams are cellular solids composed of solid and gas phases, whose mechanical, thermal, and acoustic properties are determined by the composition, volume fraction, and connectivity of both phases. A new high‐throughput additive manufacturing method, referred to as direct bubble writing, for creating polymer foams with locally programmed bubble size, volume fraction, and connectivity is reported. Direct bubble writing relies on rapid generation and patterning of liquid shell–gas core droplets produced using a core–shell nozzle. The printed polymer foams are able to retain their overall shape, since the outer shell of these bubble droplets consist of a low‐viscosity monomer that is rapidly polymerized during the printing process. The transition between open‐ and closed‐cell foams is independently controlled by the gas used, while the foam can be tailored on‐the‐fly by adjusting the gas pressure used to produce the bubble droplets. As exemplars, homogeneous and graded polymer foams in several motifs, including 3D lattices, shells, and out‐of‐plane pillars are fabricated. Conductive composite foams with controlled stiffness for use as soft pressure sensors are also produced.

     
    more » « less
  3. Photopolymerizable semicrystalline thermoplastics resulting from thiol–ene polymerizations were formed via fast polymerizations and achieved excellent mechanical properties. These materials have been shown to produce materials desirable for additive manufacturing (3D printing), especially for recyclable printing and investment casting. However, while well-resolved prints were previously achieved with the thiol–ene thermoplastics, the remarkable elongation at break ( ε max ) and toughness ( T ) attained in bulk were not realized for 3D printed components ( ε max,bulk ∼ 790%, T bulk ∼ 102 MJ m −3 vs. ε max,print < 5%, T print < 0.5 MJ m −3 ). In this work, small concentrations (5–10 mol%) of a crosslinker were added to the original thiol–ene resin composition without sacrificing crystallization potential to achieve semicrystalline, covalently crosslinked networks with enhanced mechanical properties. Improvements in ductility and overall toughness were observed for printed crosslinked structures, and substantial mechanical augmentation was further demonstrated with post-manufacture thermal conditioning of printed materials above the melting temperature ( T m ). In some instances, this thermal conditioning to reset the crystalline component of the crosslinked prints yielded mechanical properties that were comparable or superior to its bulk counterpart ( ε max ∼ 790%, T ∼ 95 MJ m −3 ). These unique photopolymerizations and their corresponding monomer compositions exhibited concurrent polymerization and crystallization along with mechanical properties that were tunable by changes to the monomer composition, photopolymerization conditions, and post-polymerization conditioning. This is the first example of a 3D printed semicrystalline, crosslinked material with thermally tunable mechanical properties that are superior to many commercially-available resins. 
    more » « less
  4. null (Ed.)
    Abstract When using light-based three-dimensional (3D) printing methods to fabricate functional micro-devices, unwanted light scattering during the printing process is a significant challenge to achieve high-resolution fabrication. We report the use of a deep neural network (NN)-based machine learning (ML) technique to mitigate the scattering effect, where our NN was employed to study the highly sophisticated relationship between the input digital masks and their corresponding output 3D printed structures. Furthermore, the NN was used to model an inverse 3D printing process, where it took desired printed structures as inputs and subsequently generated grayscale digital masks that optimized the light exposure dose according to the desired structures’ local features. Verification results showed that using NN-generated digital masks yielded significant improvements in printing fidelity when compared with using masks identical to the desired structures. 
    more » « less
  5. Abstract

    A rapid and facile approach to predictably control integration between two materials with divergent properties is introduced. Programmed integration between photopolymerizable soft and stiff hydrogels is investigated due to their promise in applications such as tissue engineering where heterogeneous properties are often desired. The spatial control afforded by grayscale 3D printing is leveraged to define regions at the interface that permit diffusive transport of a second material in‐filled into the 3D printed part. The printing parameters (i.e., effective exposure dose) for the resin are correlated directly to mesh size to achieve controlled diffusion. Applying this information to grayscale exposures leads to a range of distances over which integration is achieved with high fidelity. A prescribed finite distance of integration between soft and stiff hydrogels leads to a 33% increase in strain to failure under tensile testing and eliminates failure at the interface. The feasibility of this approach is demonstrated in a layer‐by‐layer 3D printed part fabricated by stereolithography, which is subsequently infilled with a soft hydrogel containing osteoblastic cells. In summary, this approach holds promise for applications where integration of multiple materials and living cells is needed by allowing precise control over integration and reducing mechanical failure at contrasting material interfaces.

     
    more » « less