skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spherically symmetric accretion on to a compact object through a standing shock: the effects of general relativity in the Schwarzschild geometry
ABSTRACT A core-collapse supernova is generated by the passage of a shock wave through the envelope of a massive star, where the shock wave is initially launched from the ‘bounce’ of the neutron star formed during the collapse of the stellar core. Instead of successfully exploding the star, however, numerical investigations of core-collapse supernovae find that this shock tends to ‘stall’ at small radii (≲10 neutron star radii), with stellar material accreting on to the central object through the standing shock. Here, we present time-steady, adiabatic solutions for the density, pressure, and velocity of the shocked fluid that accretes on to the compact object through the stalled shock, and we include the effects of general relativity in the Schwarzschild metric. Similar to previous works that were carried out in the Newtonian limit, we find that the gas ‘settles’ interior to the stalled shock; in the relativistic regime analysed here, the velocity asymptotically approaches zero near the Schwarzschild radius. These solutions can represent accretion on to a material surface if the radius of the compact object is outside of its event horizon, such as a neutron star; we also discuss the possibility that these solutions can approximately represent the accretion of gas on to a newly formed black hole following a core-collapse event. Our findings and solutions are particularly relevant in weak and failed supernovae, where the shock is pushed to small radii and relativistic effects are large.  more » « less
Award ID(s):
2006684
PAR ID:
10372055
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
516
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
p. 4814-4821
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Some massive stars likely fail to produce core-collapse supernovae, but these failed supernovae (FSNe) can generate an electromagnetic outburst prior to the disappearance of the star, as the mass lost to neutrinos during the stellar core collapse results in the formation and breakout of a second shock. We show that, when the mass lost to neutrinos is sufficiently small, there are two self-similar solutions that describe the propagation of a weak shock into a hydrodynamically expanding envelope that simultaneously yield accretion onto the black hole. The larger Mach number solution is unstable and yields the minimum Mach number that a shock must have to strengthen into the energy-conserving regime. Above a critical mass loss, there are no weak-shock solutions, implying that there are only strong explosions if the neutrino mass loss is above a critical value, and this value is a few percent of the mass of the star (and is physically achievable) for typical parameters. Our results imply that the fate of the explosion from an FSN—weak with little to no mass ejection or strong with the expulsion of the majority of the envelope—is a sensitive function of the stellar properties and the neutrino mass loss. We also show that there is a second type of self-similar solution for the shock that results in thesettlingof the gas near the compact object, which may be applicable to nonterminal stellar eruptions and the response of a gaseous disk to gravitational-wave induced mass loss from a binary black hole merger. 
    more » « less
  2. Abstract Observations and theory suggest that core-collapse supernovae can span a range of explosion energies, and when sub-energetic the shockwave initiating the explosion can decelerate to speeds comparable to the escape speed of the progenitor. In these cases, gravity will complicate the explosion hydrodynamics and conceivably cause the shock to stall at large radii within the progenitor star. To understand these unique properties of weak explosions, we develop a perturbative approach for modeling the propagation of an initially strong shock into a time-steady, infalling medium in the gravitational field of a compact object. This method writes the shock position and the post-shock velocity, density, and pressure as series solutions in the (time-dependent) ratio of the freefall speed to the shock speed, and predicts that the shock stalls within the progenitor if the explosion energy is below a critical value. We show that our model agrees very well with hydrodynamic simulations, and accurately predicts (for example) the time-dependent shock position and velocity and the radius at which the shock stalls. Our results have implications for black hole formation and the newly detected class of fast X-ray transients (FXTs). In particular, we propose that a “phantom shock breakout”—where the outer edge of the star falls through a stalled shock—can yield a burst of X-rays without a subsequent optical/UV signature, similar to FXTs. This model predicts the rise time of the X-ray burst,td, and the mean photon energy,kT, are anticorrelated, approximately as T t d 5 / 8
    more » « less
  3. The joint observation of core-collapse supernovae with gamma-ray bursts shows that jets can be launched in the aftermath of stellar core collapse, likely by a newly formed black hole that accretes matter from the star. Such gamma-ray bursts have only been observed accompanying Type Ibc supernovae, indicating a stellar progenitor that lost its hydrogen envelope before collapse. According to recent hypothesis, it is possible that jets are launched in core-collapse events even when the progenitors still retain their hydrogen envelopes; however, such jets are not able to burrow through the star and will be stalled into the interior of the progenitor star before escaping. These jets are called choked jets. High-energy neutrinos produced by such choked jets could escape the stellar envelope and could be observed. Here, we examine how multimessenger searches for high-energy neutrinos and core-collapse supernovae can detect or limit the fraction of stellar collapses that produce jets. We find that a high fraction of jet production is already limited by previous observational campaigns. We explore possibilities with future observations using Large Synoptic Survey Telescope, IceCube, and Km3NET. 
    more » « less
  4. Abstract For the first ∼3 yrs after the binary neutron star merger event GW 170817, the radio and X-ray radiation has been dominated by emission from a structured relativistic off-axis jet propagating into a low-density medium withn< 0.01 cm−3. We report on observational evidence for an excess of X-ray emission atδt> 900 days after the merger. WithLx≈ 5 × 1038erg s−1at 1234 days, the recently detected X-ray emission represents a ≥3.2σ(Gaussian equivalent) deviation from the universal post-jet-break model that best fits the multiwavelength afterglow at earlier times. In the context ofJetFitafterglow models, current data represent a departure with statistical significance ≥3.1σ, depending on the fireball collimation, with the most realistic models showing excesses at the level of ≥3.7σ. A lack of detectable 3 GHz radio emission suggests a harder broadband spectrum than the jet afterglow. These properties are consistent with the emergence of a new emission component such as synchrotron radiation from a mildly relativistic shock generated by the expanding merger ejecta, i.e., a kilonova afterglow. In this context, we present a set of ab initio numerical relativity binary neutron star (BNS) merger simulations that show that an X-ray excess supports the presence of a high-velocity tail in the merger ejecta, and argues against the prompt collapse of the merger remnant into a black hole. Radiation from accretion processes on the compact-object remnant represents a viable alternative. Neither a kilonova afterglow nor accretion-powered emission have been observed before, as detections of BNS mergers at this phase of evolution are unprecedented. 
    more » « less
  5. Abstract Gamma-ray bursts (GRBs) are flashes of high-energy radiation arising from energetic cosmic explosions. Bursts of long (greater than two seconds) duration are produced by the core-collapse of massive stars 1 , and those of short (less than two seconds) duration by the merger of compact objects, such as two neutron stars 2 . A third class of events with hybrid high-energy properties was identified 3 , but never conclusively linked to a stellar progenitor. The lack of bright supernovae rules out typical core-collapse explosions 4–6 , but their distance scales prevent sensitive searches for direct signatures of a progenitor system. Only tentative evidence for a kilonova has been presented 7,8 . Here we report observations of the exceptionally bright GRB 211211A, which classify it as a hybrid event and constrain its distance scale to only 346 megaparsecs. Our measurements indicate that its lower-energy (from ultraviolet to near-infrared) counterpart is powered by a luminous (approximately 10 42  erg per second) kilonova possibly formed in the ejecta of a compact object merger. 
    more » « less