This content will become publicly available on December 8, 2023
- Authors:
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Award ID(s):
- 2108950
- Publication Date:
- NSF-PAR ID:
- 10387177
- Journal Name:
- Nature
- Volume:
- 612
- Issue:
- 7939
- Page Range or eLocation-ID:
- 228 to 231
- ISSN:
- 0028-0836
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT The central engine in long gamma-ray bursts (GRBs) is thought to be a compact object produced by the core collapse of massive stars, but its exact nature (black hole or millisecond magnetar) is still debatable. Although the central engine of GRB collapsars is hidden to direct observation, its properties may be imprinted on the accompanying electromagnetic signals. We aim to decipher the generic properties of central engines that are consistent with prompt observations of long GRBs detected by the Burst Alert Telescope (BAT) on board the Neil Gehrels Swift Observatory. Adopting a generic model for the central engine, in which the engine power and activity time-scale are independent of each other, we perform Monte Carlo simulations of long GRBs produced by jets that successfully breakout from the star. Our simulations consider the dependence of the jet breakout time-scale on the engine luminosity and the effects of the detector’s flux threshold. The two-dimensional (2D) distribution of simulated detectable bursts in the gamma-ray luminosity versus gamma-ray duration plane is consistent with the observed one for a range of parameter values describing the central engine. The intrinsic 2D distribution of simulated collapsar GRBs peaks at lower gamma-ray luminosities and longer durations thanmore »
-
Gamma-ray bursts (GRBs) are among the brightest and most energetic events in the universe. The duration and hardness distribution of GRBs has two clusters, now understood to reflect (at least) two different progenitors. Short-hard GRBs (SGRBs; T90 <2 s) arise from compact binary mergers, while long-soft GRBs (LGRBs; T90 >2 s) have been attributed to the collapse of peculiar massive stars (collapsars). The discovery of SN 1998bw/GRB 980425 marked the first association of a LGRB with a collapsar and AT 2017gfo/GRB 170817A/GW170817 marked the first association of a SGRB with a binary neutron star merger, producing also gravitational wave (GW). Here, we present the discovery of ZTF20abwysqy (AT2020scz), a fast-fading optical transient in the Fermi Satellite and the InterPlanetary Network (IPN) localization regions of GRB 200826A; X-ray and radio emission further confirm that this is the afterglow. Follow-up imaging (at rest-frame 16.5 days) reveals excess emission above the afterglow that cannot be explained as an underlying kilonova (KN), but is consistent with being the supernova (SN). Despite the GRB duration being short (rest-frame T90 of 0.65 s), our panchromatic follow-up data confirms a collapsar origin. GRB 200826A is the shortest LGRB found with an associated collapsar; it appears to sitmore »
-
ABSTRACT We investigate the impact of rotation and magnetic fields on the dynamics and gravitational wave emission in 2D core–collapse supernova simulations with neutrino transport. We simulate 17 different models of $15\, {\rm M}_\odot$ and $39\, {\rm M}_\odot$ progenitor stars with various initial rotation profiles and initial magnetic fields strengths up to $10^{12}\, \mathrm{G}$, assuming a dipolar field geometry in the progenitor. Strong magnetic fields generally prove conducive to shock revival, though this trend is not without exceptions. The impact of rotation on the post-bounce dynamics is more variegated, in line with previous studies. A significant impact on the time-frequency structure of the gravitational wave signal is found only for rapid rotation or strong initial fields. For rapid rotation, the angular momentum gradient at the proto-neutron star surface can appreciably affect the frequency of the dominant mode, so that known analytic relations for the high-frequency emission band no longer hold. In case of two magnetorotational explosion models, the deviation from these analytic relations is even more pronounced. One of the magnetorotational explosions has been evolved to more than half a second after the onset of the explosion and shows a subsidence of high-frequency emission at late times. Its most conspicuousmore »
-
Abstract Despite recent progress, the astrophysical channels responsible for rapid neutron capture (
r -process) nucleosynthesis remain an unsettled question. Observations of the kilonova following the gravitational-wave-detected neutron star merger GW170817 established mergers as one site of ther -process, but additional sources may be needed to fully explainr -process enrichment in the universe. One intriguing possibility is that rapidly rotating massive stars undergoing core collapse launchr -process-rich outflows off the accretion disks formed from their infalling matter. In this scenario,r -process winds are one component of the supernova (SN) ejecta produced by “collapsar” explosions. We present the first systematic study of the effects ofr -process enrichment on the emission from collapsar-generated SNe. We semianalytically modelr -process SN emission from explosion out to late times and determine its distinguishing features. The ease with whichr -process SNe can be identified depends on how effectively wind material mixes into the initiallyr -process-free outer layers of the ejecta. In many cases, enrichment produces a near-infrared (NIR) excess that can be detected within ∼75 days of explosion. We also discuss optimal targets and observing strategies for testing ther -process collapsar theory, and find that frequent monitoring of optical and NIR emission from high-velocity SNe in the first few months after explosion offers a reasonable chance ofmore » -
Context. The TESS satellite was launched in 2018 to perform high-precision photometry from space over almost the whole sky in a search for exoplanets orbiting bright stars. This instrument has opened new opportunities to study variable hot subdwarfs, white dwarfs, and related compact objects. Targets of interest include white dwarf and hot subdwarf pulsators, both carrying high potential for asteroseismology. Aims. We present the discovery and detailed asteroseismic analysis of a new g -mode hot B subdwarf (sdB) pulsator, EC 21494−7018 (TIC 278659026), monitored in TESS first sector using 120-s cadence. Methods. The TESS light curve was analyzed with standard prewhitening techniques, followed by forward modeling using our latest generation of sdB models developed for asteroseismic investigations. By simultaneously best-matching all the observed frequencies with those computed from models, we identified the pulsation modes detected and, more importantly, we determined the global parameters and structural configuration of the star. Results. The light curve analysis reveals that EC 21494−7018 is a sdB pulsator counting up to 20 frequencies associated with independent g -modes. The seismic analysis singles out an optimal model solution in full agreement with independent measurements provided by spectroscopy (atmospheric parameters derived from model atmospheres) and astrometry (distance evaluatedmore »